Publications by authors named "Vater C"

We generated transplastomic tobacco lines that stably express a human Basic Fibroblast Growth Factor (hFGFb) in their chloroplasts stroma and purified a biologically active recombinant hFGFb. MAIN: The use of plants as biofactories presents as an attractive technology with the potential to efficiently produce high-value human recombinant proteins in a cost-effective manner. Plastid genome transformation stands out for its possibility to accumulate recombinant proteins at elevated levels.

View Article and Find Full Text PDF

A promising therapeutic option for the treatment of critical-size mandibular defects is the implantation of biodegradable, porous structures that are produced patient-specifically by using additive manufacturing techniques. In this work, degradable poly(DL-lactide) polymer (PDLLA) was blended with different mineral phases with the aim of buffering its acidic degradation products, which can cause inflammation and stimulate bone regeneration. Microparticles of CaCO, SrCO, tricalcium phosphates (α-TCP, β-TCP), or strontium-modified hydroxyapatite (SrHAp) were mixed with the polymer powder following processing the blends into scaffolds with the Arburg Plastic Freeforming 3D-printing method.

View Article and Find Full Text PDF

Fracture fixation in an ageing population is challenging and fixation failure increases mortality and societal costs. We report a novel fracture fixation treatment by applying a hydroxyapatite (HA) based biomaterial at the bone-implant interface and biologically activating the biomaterial by systemic administration of a bisphosphonate (zoledronic acid, ZA). We first used an animal model of implant integration and applied a calcium sulphate (CaS)/HA biomaterial around a metallic screw in the tibia of osteoporotic rats.

View Article and Find Full Text PDF

Recombinant human bone morphogenetic protein-2 (rhBMP-2) has been FDA-approved for lumbar fusion, but supraphysiologic initial burst release due to suboptimal carrier and late excess bone resorption caused by osteoclast activation have limited its clinical usage. One strategy to mitigate the pro-osteoclast side effect of rhBMP-2 is to give systemic bisphosphonates, but it presents challenges with systemic side effects and low local bioavailability. The aim of this study was to analyze if posterolateral spinal fusion (PLF) could be improved by utilizing a calcium sulfate/hydroxyapatite (CaS/HA) carrier co-delivering rhBMP-2 and zoledronic acid (ZA).

View Article and Find Full Text PDF

In basketball defence, it is impossible to keep track of all players without peripheral vision. This is the first study to investigate peripheral vision usage in an experimentally controlled setup, with sport-specific basketball stimuli from a first-person perspective, large viewing eccentricities (up to 90° to the left and right), and natural action responses. A CAVE and a motion-tracking system was used to project the scenarios and capture movement responses of high- and low-skilled basketball players, respectively.

View Article and Find Full Text PDF

Decision-making in team sports necessitates monitoring multiple performers located at different distances (i.e., viewing eccentricities) from a critical information source.

View Article and Find Full Text PDF

Tissue engineering of ligaments and tendons aims to reproduce the complex and hierarchical tissue structure while meeting the biomechanical and biological requirements. For the first time, the additive manufacturing methods of embroidery technology and melt electrowriting (MEW) were combined to mimic these properties closely. The mechanical benefits of embroidered structures were paired with a superficial micro-scale structure to provide a guide pattern for directional cell growth.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigated the effectiveness and tolerability of solriamfetol as a possible treatment for adults with ADHD, involving 60 participants over a 6-week trial period.
  • Results showed that solriamfetol was well tolerated, with no significant impact on heart rate or blood pressure and a higher percentage of participants experiencing notable improvements compared to those on placebo.
  • However, those on solriamfetol did report adverse events at a slightly higher rate, including decreased appetite and headaches, indicating a need for careful monitoring during treatment.
View Article and Find Full Text PDF

Their excellent mechanical properties, degradability and suitability for processing by 3D printing technologies make the thermoplastic polylactic acid and its derivatives favourable candidates for biomaterial-based bone regeneration therapies. In this study, we investigated whether bioactive mineral fillers, which are known to promote bone healing based on their dissolution products, can be integrated into a poly(L-lactic--glycolic) acid (PLLA-PGA) matrix and how key characteristics of degradation and cytocompatibility are influenced. The polymer powder was mixed with particles of CaCO, SrCO, strontium-modified hydroxyapatite (SrHAp) or tricalcium phosphates (α-TCP, β-TCP) in a mass ratio of 90 : 10; the resulting composite materials have been successfully processed into scaffolds by the additive manufacturing method Arburg Plastic Freeforming (APF).

View Article and Find Full Text PDF

Calcium phosphate cements (CPC) are currently widely used bone replacement materials with excellent bioactivity, but have considerable disadvantages like slow degradation. For critical-sized defects, however, an improved degradation is essential to match the tissue regeneration, especially in younger patients who are still growing. We demonstrate that a combination of CPC with mesoporous bioactive glass (MBG) particles led to an enhanced degradation and in a critical alveolar cleft defect in rats.

View Article and Find Full Text PDF

Background: Previous research has found that a unique profile of the Child Behavior Checklist comprising of aggregate elevations of the Attention, Anxiety/Depression and Aggression scales (A-A-A profile, CBCL-Bipolar (BP) profile, CBCL-Dysregulation profile (DP); henceforth CBCL-BP/DP profile) is associated with a clinical diagnosis of pediatric bipolar (BP) disorder.

Objective: The main aim of the study is to evaluate the strength of the association between the CBCL-BP/DP profile and the clinical diagnosis of pediatric BP disorder through a meta-analysis.

Methods: A literature search was performed to identify studies that examined the association between a positive CBCL-BP/DP profile and a clinical diagnosis of pediatric BP disorder.

View Article and Find Full Text PDF

Despite the glimmer of hope provided by the discovery and commercialization of bone morphogenetic protein-2 (BMP-2) as a bone graft substitute, side effects related to the use of supraphysiological doses have hindered its clinical usage. In this study, we compared the osteoinductive potential of BMP-2 homodimer with a heterodimer of BMP-2/7, both delivered via a collagen-hydroxyapatite (CHA) scaffold delivery system, with the aim to reduce the overall therapeutic BMP doses and the associated side-effects. We first show that the incorporation of hydroxyapatite in collagen-based BMP delivery systems is pivotal for achieving efficient BMP sequestration and controlled release.

View Article and Find Full Text PDF

Attention deficit/hyperactivity disorder (ADHD), a common neurodevelopmental disorder, is the most frequent comorbid condition seen in children with autism spectrum disorder (ASD). This high comorbidity between ADHD and ASD worsens symptom manifestations and complicates disease treatment and prognosis. It remains unclear whether individuals suffering with both ADHD and ASD, compared to individuals with ADHD only, share overlapping neural correlates associated with ADHD neuropathology, or exhibit a distinct neuropathological profile.

View Article and Find Full Text PDF

Cement augmentation of pedicle screws is one of the most promising approaches to enhance the anchoring of screws in the osteoporotic spine. To date, there is no ideal cement for pedicle screw augmentation. The purpose of this study was to investigate whether an injectable, bioactive, and degradable calcium sulfate/hydroxyapatite (CaS/HA) cement could increase the maximum pull-out force of pedicle screws in osteoporotic vertebrae.

View Article and Find Full Text PDF

Critical bone defects are the result of traumatic, infection- or tumor-induced segmental bone loss and represent a therapeutic problem that has not been solved by current reconstructive or regenerative strategies yet. Scaffolds functionalized with naturally occurring bioactive factor mixtures show a promising chemotactic and angiogenic potential in vitro and therefore might stimulate bone regeneration in vivo. To assess this prospect, the study targets at heparin-modified mineralized collagen scaffolds functionalized with naturally occurring bioactive factor mixtures and/or rhBMP-2.

View Article and Find Full Text PDF

High-level athletes can predict the actions of an opposing player. Interestingly, such predictions are also reflected by the athlete's gaze behavior. In cricket, for example, players first pursue the ball with their eyes before they very often initiate two predictive saccades: one to the predicted ball-bounce point and a second to the predicted ball-bat-contact point.

View Article and Find Full Text PDF

The fabrication of patient-specific scaffolds for bone substitutes is possible through extrusion-based 3D printing of calcium phosphate cements (CPC) which allows the generation of structures with a high degree of customization and interconnected porosity. Given the brittleness of this clinically approved material, the stability of open-porous scaffolds cannot always be secured. Herein, a multi-technological approach allowed the simultaneous combination of CPC printing with melt electrowriting (MEW) of polycaprolactone (PCL) microfibers in an alternating, tunable design in one automated fabrication process.

View Article and Find Full Text PDF

Peripheral vision is fundamental for many real-world tasks, including walking, driving, and aviation. Nonetheless, there has been no effort to connect these applied literatures to research in peripheral vision in basic vision science or sports science. To close this gap, we analyzed 60 relevant papers, chosen according to objective criteria.

View Article and Find Full Text PDF

To treat critical-size bone defects, composite materials and tissue-engineered bone grafts play important roles in bone repair materials. The purpose of this study was to investigate the bone regenerative potential of hybrid scaffolds consisting of macroporous calcium phosphate cement (CPC) and microporous mineralized collagen matrix (MCM). Hybrid scaffolds were synthetized by 3D plotting CPC and then filling with MCM (MCM-CPC group) and implanted into a 5 mm critical size femoral defect in rats.

View Article and Find Full Text PDF

Background: While bone marrow-derived mesenchymal stromal cells (BM-MSCs) have been used for many years in bone tissue engineering applications, the procedure still has drawbacks such as painful collection methods and damage to the donor site. Dental pulp-derived stem cells (DPSCs) are readily accessible, occur in high amounts, and show a high proliferation and differentiation capability. Therefore, DPSCs may be a promising alternative for BM-MSCs to repair bone defects.

View Article and Find Full Text PDF

Difficulties in treating pseudarthrosis and critical bone defects are still evident in physicians' clinical routines. Bone morphogenetic protein 2 (BMP-2) has shown promising osteoinductive results but also considerable side effects, not unexpected given that it is a morphogen. Thus, the bone regenerative potential of the novel selective, non-morphogenic EP prostaglandin receptor agonist KMN-159 was investigated in this study.

View Article and Find Full Text PDF
Article Synopsis
  • Lecithin-based nanoemulsions (NEs) are identified as effective and safe drug carriers for skin applications, possibly aiding in wound healing.
  • The study explored the incorporation of two natural wound healing agents, betulin-enriched extract from birch bark (BET) and purified spruce balm (PSB), into these NEs and tested their effects on human skin cells.
  • Results indicated that these drug-loaded NEs significantly improved cell viability and wound closure rates compared to control formulations, highlighting the potential of BET and PSB for enhanced wound care solutions.
View Article and Find Full Text PDF

The purpose of this study was to investigate, in vitro and in vivo, the suitability of chitosan (CHS) scaffolds produced by the net-shape-nonwoven (NSN) technology, for use as bone graft substitutes in a critical-size femoral bone defect in rats. For in vitro investigations, scaffolds made of CHS, mineralized collagen (MCM), or human cancellous bone allograft (CBA) were seeded with human telomerase-immortalized mesenchymal stromal cells (hTERT-MSC), incubated for 14 days, and thereafter evaluated for proliferation and osteogenic differentiation. In vivo, CHS, MCM and CBA scaffolds were implanted into 5 mm critical-size femoral bone defects in rats.

View Article and Find Full Text PDF

Significance: This study summarizes the empirical evidence on the use of peripheral vision for the most-researched peripheral vision tools in sports.

Unlabelled: The objective of this review was to explain if and how the tools can be used to investigate peripheral vision usage and how empirical findings with these vision tools might be transferred to sports situations. The data sources used in this study were Scopus, ScienceDirect, and PubMed.

View Article and Find Full Text PDF

To develop cost-effective and efficient bone substitutes for improved regeneration of bone defects, heparin-modified mineralized collagen scaffolds were functionalized with concentrated, naturally occurring bioactive factor mixtures derived from adipose tissue, platelet-rich plasma and conditioned medium from a hypoxia-treated human bone marrow-derived mesenchymal stem cell line. Besides the analysis of the release kinetics of functionalized scaffolds, the bioactivity of the released bioactive factors was tested with regard to chemotaxis and angiogenic tube formation. Additionally, functionalized scaffolds were seeded with human bone marrow-derived mesenchymal stromal cells (hBM-MSC) and their osteogenic and angiogenic potential was investigated.

View Article and Find Full Text PDF