Thirdhand cigarette smoke (THS) was recently recognized as an environmental health hazard; however, little is known about it effects on cells. Mitochondria are sensitive monitors of cell health and report on environmentally induced stress. We tested the effects of low levels of THS extracted from terry cloth on mitochondrial morphology and function using stem cells with well-defined mitochondria.
View Article and Find Full Text PDFThirdhand smoke (THS) is a mixture of chemicals that remain on indoor surfaces after smoking has ceased. These chemicals can be inhaled, ingested, or absorbed dermally, and thus could impact human health. We evaluated the cytotoxicity and mode of action of fresh and aged THS, the toxicity of volatile organic chemicals (VOCs) in THS, and the molecular targets of acrolein, a VOC in THS.
View Article and Find Full Text PDFWe tested the toxicity of thirdhand smoke (THS) using two controlled laboratory exposure scenarios and low levels of THS. One exposure modeled THS in a car parked outdoors, while the second modeled THS in a room without sunlight. The fabrics were exposed to cigarette smoke and then extracted in culture medium.
View Article and Find Full Text PDFThirdhand smoke (THS) refers to components of secondhand smoke that stick to indoor surfaces and persist in the environment. Little is known about exposure levels and possible remediation measures to reduce potential exposure in contaminated areas. This study deals with the effect of aging on THS components and evaluates possible exposure levels and remediation measures.
View Article and Find Full Text PDFHuman embryonic stem cells (hESC) are difficult to adapt to 96-well plate assays, such as the MTT assay, because they survive best when plated as colonies, which are not easily counted and plated accurately. Two methods were developed to address this problem. In the first, ROCK inhibitor (ROCKi) was used, which allows accurate counting and plating of single hESC.
View Article and Find Full Text PDFElectronic cigarettes (EC) and refill fluids are distributed with little information on their pre- and postnatal health effects. This study compares the cytotoxicity of EC refill fluids using embryonic and adult cells and examines the chemical characteristics of refill fluids using HPLC. Refill solutions were tested on human embryonic stem cells (hESC), mouse neural stem cells (mNSC), and human pulmonary fibroblasts (hPF) using the MTT assay, and NOAELs and IC(50)s were determined from dose-response curves.
View Article and Find Full Text PDF