Myotubular myopathy is a rare disease of genetic origin characterized by significant muscle weakness leading to respiratory disorders and for which no treatment exists today. In this paper, we show that inhibition of the activity of the enzyme PI3KC2β prevents the development of this myopathy in a mouse model of the disease, thus identifying a therapeutic target to treat myotubular myopathy in humans.
View Article and Find Full Text PDFHomocysteine (Hcy), produced physiologically in all cells, is an intermediate metabolite of methionine and cysteine metabolism. Hyperhomocysteinemia (HHcy) resulting from an in-born error of metabolism that leads to accumulation of high levels of Hcy, is associated with vascular damage, neurodegeneration and cognitive decline. Using a HHcy model in neuronal cells, primary cortical neurons and transgenic zebrafish, we demonstrate diminished autophagy and Hcy-induced neurotoxicity associated with mitochondrial dysfunction, fragmentation and apoptosis.
View Article and Find Full Text PDFPhosphoinositides (PIs) are membrane lipids that regulate signal transduction and vesicular trafficking. X-linked centronuclear myopathy (XLCNM), also called myotubular myopathy, results from loss-of-function mutations in the MTM1 gene, which encodes the myotubularin phosphatidylinositol 3-phosphate (PtdIns3P) lipid phosphatase. No therapy for this disease is currently available.
View Article and Find Full Text PDFMutations in the BIN1 (Bridging Interactor 1) gene, encoding the membrane remodeling protein amphiphysin 2, cause centronuclear myopathy (CNM) associated with severe muscle weakness and myofiber disorganization and hypotrophy. There is no available therapy, and the validation of therapeutic proof of concept is impaired by the lack of a faithful and easy-to-handle mammalian model. Here, we generated and characterized the Bin1 mouse through Bin1 knockout in skeletal muscle.
View Article and Find Full Text PDFSkeletal muscle development and regeneration are tightly regulated processes. How the intracellular organization of muscle fibers is achieved during these steps is unclear. Here, we focus on the cellular and physiological roles of amphiphysin 2 (BIN1), a membrane remodeling protein mutated in both congenital and adult centronuclear myopathies (CNM), that is ubiquitously expressed and has skeletal muscle-specific isoforms.
View Article and Find Full Text PDF