γδ T cells signify a foundational group of immune cells that infiltrate tumors early on, engaging in combat against cancer cells. The buildup of γδ T cells as cancer advances underscores their significance. Initially, these cells infiltrate and enact cytotoxic effects within the tumor tissue.
View Article and Find Full Text PDFA large body of experimental research reveals that tumor-associated macrophages (TAMs) are the major immunosuppressor cells in the breast tumor microenvironment (TME). The infiltration of macrophages is correlated with inverse outcomes like disease-free survival and overall survival of cancer patients. They are responsible for heterogeneity, metastasis, and drug resistance.
View Article and Find Full Text PDFTriple-negative breast cancer (TNBC) is an aggressive and immunogenic subtype of breast cancer. This tumorigenicity is independent of hormonal or HER2 pathways because of a lack of respective receptor expression. TNBC is extremely prone to drug resistance and early recurrence because of T-regulatory cell (Treg) infiltration into the tumor microenvironment (TME) in addition to other mechanisms like genomic instability.
View Article and Find Full Text PDFBackground: Lung cancer is a significant health concern worldwide due to high mortality and morbidity, despite the advances in diagnosis, treatment, and management. Recent experimental evidence from different models suggested long non-coding RNAs (lncRNAs) as major modulators of cancer stem cells (CSCs) in the tumor microenvironment (TME) to support metastasis and drug resistance in lung cancer. Evidence-based studies demonstrated that natural products interfere with TME functions.
View Article and Find Full Text PDFBreast cancer (BC) is the most common cancer in women. Globally, the incidence of BC surpassed lung cancer for the first time in 2020, and it is highly heterogeneous. The tumor microenvironment (TME) of BC consists of blood vessels, fibroblasts, signaling molecules, immune cells, and extracellular matrix.
View Article and Find Full Text PDFIntroduction: Translational inhibition of amyloid precursor protein (APP) by Posiphen has been shown to reduce APP and its fragments in cell culture, animal models, and mildly cognitively impaired patients, making it a promising drug candidate for the treatment of Alzheimer's disease.
Methods: We used a mouse model of Alzheimer's disease (APP/presenilin-1) to examine Posiphen's efficacy, pharmacodynamics, and pharmacokinetics.
Results: Posiphen treatment normalized impairments in spatial working memory, contextual fear learning, and synaptic function in APP/presenilin-1 mice, without affecting their visual acuity, motor skills, or motivation and without affecting wild-type mice.
Amyloid-β proteins (Aβ) of 42 (Aβ42) and 40 aa (Aβ40) accumulate as senile plaques (SP) and cerebrovascular amyloid protein deposits that are defining diagnostic features of Alzheimer's disease (AD). A number of rare mutations linked to familial AD (FAD) on the Aβ precursor protein (APP), Presenilin-1 (PS1), Presenilin- 2 (PS2), Adamalysin10, and other genetic risk factors for sporadic AD such as the ε4 allele of Apolipoprotein E (ApoE-ε4) foster the accumulation of Aβ and also induce the entire spectrum of pathology associated with the disease. Aβ accumulation is therefore a key pathological event and a prime target for the prevention and treatment of AD.
View Article and Find Full Text PDFBACE1 (β-secretase) and α-secretase cleave the Alzheimer's amyloid β protein (Aβ) precursor (APP) to C-terminal fragments of 99 aa (CTFβ) and 83 aa (CTFα), respectively, which are further cleaved by γ-secretase to eventually secrete Aβ and Aα (a.k.a.
View Article and Find Full Text PDFα-Synuclein aggregation is one of the major etiological factors implicated in Parkinson's disease (PD). The prevention of aggregation of α-synuclein is a potential therapeutic intervention for preventing PD. The discovery of natural products as alternative drugs to treat PD and related disorders is a current trend.
View Article and Find Full Text PDFAntioxidants present in various plant tissues exhibit health benefits by scavenging reactive oxygen species generated under various pathophysiological conditions. In the present study, bioactive compounds from black gram husk were extracted with water and the protection of black gram husk (BGH) extract against oxidative damage in DNA and erythrocytes were studied. BGH extract had total polyphenol content of 59 mg of gallic acid equivalents (GAE).
View Article and Find Full Text PDFParkinson's disease (PD) is a neurodegenerative disease with multiple etiologies. Advanced glycation end products (AGEs) accumulate in the aging brain and could be one of the reasons for age-related diseases like PD. Oxidative stress also leads to the formation of AGEs and may be involved in neurodegeneration by altering the properties of proteins.
View Article and Find Full Text PDFTau is mainly distributed in cytoplasm and also found to be localized in the nucleus. There is limited data on DNA binding potential of Tau. We provide novel evidence on nicking of DNA by Tau.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2010
Emerging evidences on the nuclear localization of alpha-Synuclein in neurons and a close look in to its primary sequence/structural organization led us to examine its DNA binding ability. Subsequently, we first time demonstrated the interaction of DNA with alpha-Synuclein which was also confirmed by others. We recently showed that double-stranded oligos induce partial folding in alpha-Synuclein and promote its aggregation, where as single-strand circular DNA and supercoiled plasmid DNA induced a helix-rich conformation and protected the protein from fibrillation.
View Article and Find Full Text PDF