Publications by authors named "Vasudevan Ayyappan"

Salt marsh grass () plays a crucial role in Delaware coastal regions by serving as a physical barrier between land and water along the inland bays and beaches. This vegetation helps to stabilize the shoreline and prevent erosion, protecting the land from the powerful forces of the waves and tides. In addition to providing a physical barrier, salt marsh grass is responsible for filtering nutrients in the water, offering an environment for aquatic species and presenting a focal point of study for high salt tolerance in plants.

View Article and Find Full Text PDF

Background: Switchgrass (Panicum virgatum L.) is a warm-season perennial (C4) grass identified as an important biofuel crop in the United States. It is well adapted to the marginal environment where heat and moisture stresses predominantly affect crop growth.

View Article and Find Full Text PDF

Background: Sustainable production of high-quality feedstock has been of great interest in bioenergy research. Despite the economic importance, high temperatures and water deficit are limiting factors for the successful cultivation of switchgrass in semi-arid areas. There are limited reports on the molecular basis of combined abiotic stress tolerance in switchgrass, particularly the combination of drought and heat stress.

View Article and Find Full Text PDF

Background: Histone modifications play a significant role in the regulation of transcription and various biological processes, such as development and regeneration. Though a few genomic (including DNA methylation patterns) and transcriptomic studies are currently available in switchgrass, the genome-wide distribution of histone modifications has not yet been studied to help elucidate gene regulation and its application to switchgrass improvement.

Results: This study provides a comprehensive epigenomic analyses of two contrasting switchgrass ecotypes, lowland (AP13) and upland (VS16), by employing chromatin immunoprecipitation sequencing (ChIP-Seq) with two histone marks (suppressive- H3K9 and active- H4K12).

View Article and Find Full Text PDF

Transcriptomes of two switchgrass genotypes representing the upland and lowland ecotypes will be key tools in switchgrass genome annotation and biotic and abiotic stress functional genomics. Switchgrass (Panicum virgatum L.) is an important bioenergy feedstock for cellulosic ethanol production.

View Article and Find Full Text PDF

Histone modifications such as methylation and acetylation play a significant role in controlling gene expression in unstressed and stressed plants. Genome-wide analysis of such stress-responsive modifications and genes in non-model crops is limited. We report the genome-wide profiling of histone methylation (H3K9me2) and acetylation (H4K12ac) in common bean (Phaseolus vulgaris L.

View Article and Find Full Text PDF

The aminoglycoside streptomycin binds to ribosomes to promote mistranslation and eventual inhibition of translation. Streptomycin kills bacteria, whereas many other non-aminoglycoside inhibitors of translation do not. Because mistranslation is now known to affect DNA replication, we asked if hydroxyurea, a specific inhibitor of DNA synthesis, affects killing, and find that hydroxyurea significantly attenuates killing by streptomycin.

View Article and Find Full Text PDF

The phenolic compounds and flavonoids were determined from the extracts of Withania somnifera root (WSREt) and leaf (WSLEt). The WSREt has 28.26 mg/g total phenolic compounds and 17.

View Article and Find Full Text PDF

Growth of multiple myeloma cells is controlled by various factors derived from host bone marrow microenvironments. Interaction between multiple myeloma cells and bone marrow stromal cells (BMSCs) plays an important role in the expression of adhesive molecules and secretion of growth factors involved in multiple myeloma (MM) cell growth, survival, and resistance to anticancer drugs. Recently, the possibility of developing novel anti-cancer therapeutic strategies targeting both MM cells and MM cell-BMSC interactions has been discussed.

View Article and Find Full Text PDF

Two transgenic lines, of Nicotiana benthamiana expressing Turnip crinkle virus (TCV)-coat protein (CP) gene with contrasting phenotype, the highest (#3) and the lowest (#18) CP expressers, were selected and challenged with the homologous TCV. The former, the highest expresser, showed nearly five times more CP expression than the latter. Progenies of #3 and #18 lines showed 30 and 100% infection rates, respectively.

View Article and Find Full Text PDF

The entire virion protein 2 (VP2) gene of Canine Parvovirus (CPV) was amplified by polymerase chain reaction (PCR) and engineered to be expressed by a bacterial expression vector pET-28a, under the control of the IPTG-inducible T7lac promoter. SDS-PAGE gel revealed that VP2 expressed as a 67kDa, and found mainly in the pellet of the bacterial lysates, suggesting that cytoplasmic expression is not preferred. The recombinant protein VP2 fused with His-tag was purified from Esherichia coli using Ni-NTA resin under denaturing conditions.

View Article and Find Full Text PDF