Publications by authors named "Vasudeva Mahavisno"

Background: The relative contribution of epigenetic mechanisms to carcinogenesis is not well understood, including the extent to which epigenetic dysregulation and somatic mutations target similar genes and pathways. We hypothesize that during carcinogenesis, certain pathways or biological gene sets are commonly dysregulated via DNA methylation across cancer types. The ability of our logistic regression-based gene set enrichment method to implicate important biological pathways in high-throughput data is well established.

View Article and Find Full Text PDF

Motivation: The elucidation of biological concepts enriched with differentially expressed genes has become an integral part of the analysis and interpretation of genomic data. Of additional importance is the ability to explore networks of relationships among previously defined biological concepts from diverse information sources, and to explore results visually from multiple perspectives. Accomplishing these tasks requires a unified framework for agglomeration of data from various genomic resources, novel visualizations, and user functionality.

View Article and Find Full Text PDF

Molecular interaction data exists in a number of repositories, each with its own data format, molecule identifier and information coverage. Michigan molecular interactions (MiMI) assists scientists searching through this profusion of molecular interaction data. The original release of MiMI gathered data from well-known protein interaction databases, and deep merged this information while keeping track of provenance.

View Article and Find Full Text PDF

Global molecular profiling of cancers has shown broad utility in delineating pathways and processes underlying disease, in predicting prognosis and response to therapy, and in suggesting novel treatments. To gain further insights from such data, we have integrated and analyzed a comprehensive collection of "molecular concepts" representing > 2500 cancer-related gene expression signatures from Oncomine and manual curation of the literature, drug treatment signatures from the Connectivity Map, target gene sets from genome-scale regulatory motif analyses, and reference gene sets from several gene and protein annotation databases. We computed pairwise association analysis on all 13,364 molecular concepts and identified > 290,000 significant associations, generating hypotheses that link cancer types and subtypes, pathways, mechanisms, and drugs.

View Article and Find Full Text PDF

DNA microarrays have been widely applied to cancer transcriptome analysis; however, the majority of such data are not easily accessible or comparable. Furthermore, several important analytic approaches have been applied to microarray analysis; however, their application is often limited. To overcome these limitations, we have developed Oncomine, a bioinformatics initiative aimed at collecting, standardizing, analyzing, and delivering cancer transcriptome data to the biomedical research community.

View Article and Find Full Text PDF

A catalog of all human protein-protein interactions would provide scientists with a framework to study protein deregulation in complex diseases such as cancer. Here we demonstrate that a probabilistic analysis integrating model organism interactome data, protein domain data, genome-wide gene expression data and functional annotation data predicts nearly 40,000 protein-protein interactions in humans-a result comparable to those obtained with experimental and computational approaches in model organisms. We validated the accuracy of the predictive model on an independent test set of known interactions and also experimentally confirmed two predicted interactions relevant to human cancer, implicating uncharacterized proteins into definitive pathways.

View Article and Find Full Text PDF

DNA microarrays have been widely applied to cancer transcriptome analysis. The Oncomine database contains a large collection of such data, as well as hundreds of derived gene-expression signatures. We studied the regulatory mechanisms responsible for gene deregulation in these cancer signatures by searching for the coordinate regulation of genes with common transcription factor binding sites.

View Article and Find Full Text PDF