Objective: The present study was conducted to characterize the expression of the cysteine protease legumain in murine and human atherosclerotic tissues, and to explore the molecular mechanisms by which legumain may contribute to the pathophysiology of atherosclerosis.
Methods And Results: Using microarray analysis, legumain mRNA expression was found to increase with development of atherosclerosis in the aorta of aging Apolipoprotein E deficient mice while expression remained at low level and unchanged in arteries of age-matched C57BL/6 control mice. In situ hybridization and immunohistochemical analysis determined that legumain was predominantly expressed by macrophages in the atherosclerotic aorta, in lesions at the aortic sinus and in injured carotid arteries of Apolipoprotein E deficient mice as well as in inflamed areas in advanced human coronary atherosclerotic plaques.
The functional and structural alterations of vascular endothelium contribute to the initiation, progression, and complications of atherosclerotic plaque formation, but limited information is known about the molecular composition and pathways underlying pathological changes during atherosclerosis. We have developed an affinity proteomic strategy for in situ isolation and differential mapping of vascular endothelial proteins in normal and atherosclerotic aorta tissues. The selective labeling was carried out by perfusion of the blood vessels with an active biotin reagent for covalent modification of accessible vascular endothelial proteins.
View Article and Find Full Text PDFUlcerative colitis (UC) and Crohn's disease (CD) are common inflammatory bowel diseases producing intestinal inflammation and tissue damage. Although emerging evidence suggests these diseases are distinct, approximately 10% of patients remain classified as indeterminate inflammatory bowel disease even after invasive colonoscopy intended for diagnosis. A molecular diagnostic assay using a clinically accessible tissue would greatly assist in the classification of these diseases.
View Article and Find Full Text PDFRecombinant human interleukin (IL)-11 is a multifunctional cytokine with hematopoietic, immunomodulatory, and epithelial cell protective activities. IL-11alpha receptors are expressed on the luminal surface of intestinal epithelial cells. It was hypothesized that orally administered IL-11 would prevent mucosal damage and protect against microbial invasion in a neutropenic rat model of gram-negative sepsis.
View Article and Find Full Text PDF