Genetic diversity and population structure analyses showed progressively narrowed diversity in US Upland cotton compared to land races. GWAS identified genomic regions and candidate genes for photoperiod sensitivity in cotton. Six hundred fifty-seven accessions that included elite cotton germplasm (DIV panel), lines of a public cotton breeding program (FB panel), and tropical landrace accessions (TLA panel) of Gossypium hirsutum L.
View Article and Find Full Text PDFIdentification and genomic characterization of major resistance locus against cotton bacterial blight (CBB) using GWAS and linkage mapping to enable genomics-based development of durable CBB resistance and gene discovery in cotton. Cotton bacterial leaf blight (CBB), caused by Xanthomonas citri subsp. malvacearum (Xcm), has periodically been a damaging disease in the USA.
View Article and Find Full Text PDFBacterial blight (BB), caused by Xanthomonas citri pv. malvacearum (Xcm), is a destructive disease to cotton production in many countries. In the U.
View Article and Find Full Text PDFBackground: Improving fiber quality and yield are the primary research objectives in cotton breeding for enhancing the economic viability and sustainability of Upland cotton production. Identifying the quantitative trait loci (QTL) for fiber quality and yield traits using the high-density SNP-based genetic maps allows for bridging genomics with cotton breeding through marker assisted and genomic selection. In this study, a recombinant inbred line (RIL) population, derived from cross between two parental accessions, which represent broad allele diversity in Upland cotton, was used to construct high-density SNP-based linkage maps and to map the QTLs controlling important cotton traits.
View Article and Find Full Text PDFA high-resolution GWAS detected consistent QTL for resistance to Verticillium wilt and Fusarium wilt race 4 in 376 U.S. Upland cotton accessions based on six independent replicated greenhouse tests.
View Article and Find Full Text PDFThree hundred and ninety-one Gossypium hirsutum and 34 Gossypium barbadense accessions were screened for thrips resistance under field conditions at the Upper Coastal Plain Research Station in Rocky Mount, North Carolina in years 2014 and 2015. Visual damage ratings, thrips counts, and seedling dry weights were recorded at 2.5, 3.
View Article and Find Full Text PDFCurrent morphometric methods that comprehensively measure shape cannot compare the disparate leaf shapes found in seed plants and are sensitive to processing artifacts. We explore the use of persistent homology, a topological method applied as a filtration across simplicial complexes (or more simply, a method to measure topological features of spaces across different spatial resolutions), to overcome these limitations. The described method isolates subsets of shape features and measures the spatial relationship of neighboring pixel densities in a shape.
View Article and Find Full Text PDFLeaf shape varies spectacularly among plants. Leaves are the primary source of photoassimilate in crop plants, and understanding the genetic basis of variation in leaf morphology is critical to improving agricultural productivity. Leaf shape played a unique role in cotton improvement, as breeders have selected for entire and lobed leaf morphs resulting from a single locus, okra (l-D), which is responsible for the major leaf shapes in cotton.
View Article and Find Full Text PDFGenetic diversity and population structure in the US Upland cotton was established and core sets of allelic richness were identified for developing association mapping populations in cotton. Elite plant breeding programs could likely benefit from the unexploited standing genetic variation of obsolete cultivars without the yield drag typically associated with wild accessions. A set of 381 accessions comprising 378 Upland (Gossypium hirsutum L.
View Article and Find Full Text PDFA major leaf shape locus (L) was mapped with molecular markers and genomically targeted to a small region in the D-genome of cotton. By using expression analysis and candidate gene mapping, two LMI1 -like genes are identified as possible candidates for leaf shape trait in cotton. Leaf shape in cotton is an important trait that influences yield, flowering rates, disease resistance, lint trash, and the efficacy of foliar chemical application.
View Article and Find Full Text PDFThe cryptic wheat-alien translocation T5DL.5DS-5MgS(0.95), with leaf rust and stripe rust resistance genes Lr57 and Yr40 transferred from Aegilops geniculata (UgMg) into common wheat, was further analyzed.
View Article and Find Full Text PDFThreshability is an important crop domestication trait. The wild wheat progenitors have tough glumes enveloping the floret that make spikes difficult to thresh, whereas cultivated wheats have soft glumes and are free-threshing. In hexaploid wheat, the glume tenacity gene Tg along with the major domestication locus Q control threshability.
View Article and Find Full Text PDFFunct Integr Genomics
February 2008
Changes in plant architecture have been central to the domestication of wild species. Tillering or the degree of branching determines shoot architecture and is a key component of grain yield and/or biomass. Previously, a tiller inhibition mutant with monoculm phenotype was isolated and the mutant gene (tin3) was mapped in the distal region of chromosome arm 3AmL of Triticum monococcum.
View Article and Find Full Text PDFLeaf rust and stripe rust are important foliar diseases of wheat worldwide. Leaf rust and stripe rust resistant introgression lines were developed by induced homoeologous chromosome pairing between wheat chromosome 5D and 5M(g) of Aegilops geniculata (U(g)M(g)). Characterization of rust resistant BC(2)F(5) and BC(3)F(6) homozygous progenies using genomic in situ hybridization with Aegilops comosa (M) DNA as probe identified three different types of introgressions; two cytologically visible and one invisible (termed cryptic alien introgression).
View Article and Find Full Text PDFTillering is one of the most important agronomic traits in cereal crops because tiller number per plant determines the number of spikes or panicles per plant, a key component of grain yield and/or biomass. In order to characterize the underlying genetic variation for tillering, we have isolated mutants that are compromised in tillering ability using ethyl methanesulphonate (EMS)-based mutagenesis in diploid wheat (Triticum monococcum subsp. monococcum).
View Article and Find Full Text PDF