Enhancing food preservation and safety using environmentally friendly techniques is urgently needed. The aim of this study was to develop food packaging films using biodegradable poly-L-lactic acid (PLA) as biopolymer and carvacrol (CV) essential oil as an antioxidant/antibacterial agent for the replacement of chemical additives. CV was adsorbed onto natural zeolite (NZ) via a new vacuum adsorption method.
View Article and Find Full Text PDFNowadays, increased food safety and decreased food waste are two of the major global interests. Self-healable active packaging materials are an attractive option to achieve such targets. This property is critical for the hygiene and the consumption appropriateness of the food.
View Article and Find Full Text PDFThe use of natural raw substances for food preservation could provide a great contribution to food waste reduction, circular economy enhancement, and green process application widening. Recent studies indicated that the use of porous materials as adsorbents for natural essential oils provided nanohybrids with excellent antioxidant and antimicrobial properties. Following this trend in this work, a thymol oil (TEO) rich SBA-15 nanohybrid was prepared and characterized physiochemically with various techniques.
View Article and Find Full Text PDFThe necessity of reducing the greenhouse effect by decreasing the carbon dioxide fingerprint directed the food packaging technology to use biobased raw materials. Alginates, which are derived from brown algae species, are one of the most promising biobased biopolymers for the development of edible active coatings capable of protecting food from oxidation/bacterial spoilage. In this study, sodium alginate, which was plasticized with glycerol and mixed with a biobased thymol/natural halloysite nanohybrid, was used to develop novel edible active coatings.
View Article and Find Full Text PDFΤhe replacement of food packaging additives and preservatives with bio-based antioxidant/antibacterial compounds has been a common practice in recent years following the trend of bioeconomy and nanotechnology. Such bio-additives are often enclosed in nanocarriers for a controlled release process. Following this trend in this work, a thymol (TO)-rich activated carbon (AC) nanohybrid was prepared and characterized physicochemically with various techniques.
View Article and Find Full Text PDFSustainability, the circular economy, and the "greenhouse" effect have led the food packaging industry to use naturally available bio-compounds. The integration of such compounds in packaging films increases food safety and extends food shelf-life. The development of an active/antioxidant packaging film based on the widely commercially used low-density polyethylene, natural zeolite, and Thymol, a natural extract from thyme oil, is presented in this work.
View Article and Find Full Text PDFPolymers (Basel)
January 2023
A new era is rising in food packaging and preservation, with a consequent focus on transition to "greener" and environmentally friendly techniques. The environmental problems that are emerging nowadays impose use of natural materials for food packaging applications, replacement of chemical preservatives with natural organic extractions, such as essential oils, and targeting of new achievements, such as further extension of food shelf-life. According to this new philosophy, most of the used materials for food packaging should be recyclable, natural or bio-based, and/or edible.
View Article and Find Full Text PDFThe aim of the present study was to investigate the combined effect of chitosan dip (1% w/v) and vacuum packaging on the shelf life of fresh chicken burgers packaged in LDPE/PA/LDPE bags and stored at 4 ± 1 C for up to 12 days. Furthermore, the possible correlation among microbiological, physico-chemical and sensory indices was investigated. Burger treatments included: aerobic packaging (AP, control), vacuum packaging (VP), chitosan dipping (CHI), and vacuum packaging plus chitosan dipping (VP + CHI).
View Article and Find Full Text PDFA fast, economic, and eco-friendly methodology for the wine variety and geographical origin differentiation using C nuclear magnetic resonance (NMR) data in combination with machine learning was developed. Wine samples of different grape varieties cultivated in different regions in Greece were subjected to C NMR analysis. The relative integrals of the C spectral window were processed and extracted to build a chemical fingerprint for the characterization of each specific wine variety, and then subjected to factor analysis, multivariate analysis of variance, and -nearest neighbors analysis.
View Article and Find Full Text PDFBackground: The present study comprises the second part of a new theory related to honey authentication based on the implementation of the honey code and the use of chemometrics.
Methods: One hundred and fifty-one honey samples of seven different botanical origins (chestnut, citrus, clover, eucalyptus, fir, pine, and thyme) and from five different countries (Egypt, Greece, Morocco, Portugal, and Spain) were subjected to analysis of mass spectrometry (GC-MS) in combination with headspace solid-phase microextraction (HS-SPME).
Results: Results showed that 94 volatile compounds were identified and then semi-quantified.
Abstract: The objective of the present work was to characterize prickly pear juice prepared from prickly pear fruits of the wild cultivar in terms of shelf life (air and vacuum packaging), sensory stability (odour, taste, and appearance) physicochemical parameters (acidity, vitamin C, pH, electrical conductivity, total dissolved solids, specific weight, total sugar content, and colour coordinates , *, ) and bio-functional properties [in vitro antioxidant activity (AA%) and total phenolic content (TPC)]. For this purpose fruits were collected during August 2017 from 3 different geographical zones in Peloponnese. The shelf life of prickly juice was extended by 5 days in vacuum compared to air packaging, whereas it was found to be a rich source of phytochemicals and a natural antioxidant agent (AA of 67.
View Article and Find Full Text PDFIn the present work the mineral content and volatile profile of prickly pear juice prepared from wild cultivars was investigated. Fruits used in the study originated from three areas of the Peloponnese Peninsula. Twenty-five macro- and micro-minerals (K, Na, P, Ca, Mg, Al, B, Ba, Be, Co, Cr, Cu, Fe, Li, Mn, Mo, Ni, Sb, Se, Si, Sn, Ti, Tl, V, Zn) were determined using inductively coupled plasma atomic emission spectroscopy (ICP-OES).
View Article and Find Full Text PDFThe aim of the present study was to characterize (Ladastacho) from the region of Saidona by means of physico-chemical parameters, phenolic profile, in vitro antioxidant activity and volatile compounds. Physico-chemical parameters (pH, acidity, salinity, total dissolved solids, electrical conductivity and liquid resistivity) were determined using conventional methods. The phenolic profile was determined using high-performance liquid chromatography electrospray ionization mass spectrometry (HPLC/ESI-MS), whereas a quantitative determination was also accomplished using the total phenolics assay.
View Article and Find Full Text PDFThe present study was conducted to evaluate the quality and bio-functional properties of Portuguese honeys of different botanical and geographical origins. Quality parameter analyses included the determination of palynological (predominant, secondary, minor and isolated pollen percentage), physicochemical (°Brix, moisture content, pH, electrical conductivity, free acidity, total dissolved solids, salinity, vitamin C content and specific weight) including colour-metrics (CIELAB, Pfund and colour intensity determinations), along with volatile compounds identification using solid phase micro-extraction coupled to gas chromatography mass spectrometry. Bio-activity parameter analysis included the determination of in vitro antioxidant activity and total phenolic content using the 2,2-diphenyl-1-picryl-hydrazyl and Folin-Ciocalteu assays, respectively.
View Article and Find Full Text PDF