Exosomes from cancer cells are implicated in cancer progression and metastasis, carrying immunosuppressive factors that limit the antitumor abilities of immune cells. The development of a real-time, 3D cell/scaffold construct flow perfusion system has been explored as a novel tool in the study of T-cells and exosomes from cancer cells. Exosomes from human lung cancer (H1299 and A549) cells were co-cultured in a unidirectional flow bioreactor with CD8+ T-cells immobilized onto 3D-printed RGD-functionalized poly(L-lactic) acid (PLLA) scaffolds and assessed for IL-2 production.
View Article and Find Full Text PDFTissue engineering and regenerative medicine rely extensively on biomaterial scaffolds to support cell adhesion, proliferation, and differentiation physically and chemically in vitro and in vivo. Changes to the surface characteristics of the scaffolds have the greatest impact on cell response. Here, we discuss five dominant surface modification approaches used to biomimetically improve the most common scaffolds for tissue engineering, those based on aliphatic polyesters.
View Article and Find Full Text PDFIn this work, we combined three-dimensional (3D) scaffolds with flow perfusion bioreactors to evaluate the gradient effects of scaffold architecture and mechanical stimulation, respectively, on tumor cell phenotype. As cancer biologists elucidate the relevance of 3D in vitro tumor models within the drug discovery pipeline, it has become more compelling to model the tumor microenvironment and its impact on tumor cells. In particular, permeability gradients within solid tumors are inherently complex and difficult to accurately model in vitro.
View Article and Find Full Text PDFEver-increasing demand for bone grafts necessitates the realization of clinical implementation of bone tissue engineered constructs. The predominant hurdle to implementation remains to be securing FDA approval, based on the lack of viable methods for the rigorous monitoring of said constructs. The study presented herein details a method for such monitoring based on the shifting metabolism of mesenchymal stem cells (MSCs) as they differentiate into osteoblasts.
View Article and Find Full Text PDFDecellularized, discarded human tissues, such as the human umbilical vein, have been widely utilized for tissue engineering applications, including tendon grafts. When recellularized, such natural scaffolds are cultured in 3D dynamic culture environments (bioreactor systems). For tendon tissue-engineered grafts, such systems often employ oscillatory mechanical stimulation in the form uniaxial tensile strain.
View Article and Find Full Text PDFChemical and mechanical stimulation, when properly utilized, positively influence both the differentiation of in vitro cultured stem cells and the quality of the deposited extracellular matrix (ECM). This study aimed to find if cell-free extract from primary tenocytes can positively affect the development of a tissue-engineered tendon construct, consisting of a human umbilical vein (HUV) seeded with mesenchymal stem cells (MSCs) subjected to cyclical mechanical stimulation. The tenocytic cell-free extract possesses biological material from tendon cells that could potentially influence MSC tenocytic differentiation and construct development.
View Article and Find Full Text PDFAs the field of tissue engineering progresses ever-further toward realizing clinical implementation of tissue-engineered constructs for wound regeneration, perhaps the most significant hurdle remains the establishment of non-destructive means for real-time in vitro assessment. In order to address this barrier, the study presented herein established the viability of the development of correlations between metabolic rates (specifically oxygen uptake, glucose consumption, and lactate production) and the cellularity of tissue-engineered cultures comprised of rat mesenchymal stem cells dynamically seeded on 85% porous nonwoven spunbonded poly(l-lactic acid) fiber mesh scaffolds. Said scaffolds were cultured for up to 21 days in a flow perfusion bioreactor system wherein α-MEM (supplemented with 10% fetal bovine serum and 1% antibiotic-antimycotic) was perfused directly through each scaffold at low flow rates (~0.
View Article and Find Full Text PDFThe L-methioninase-annexin V/selenomethionine enzyme prodrug system, designed to target the tumor vasculature and release the methylselenol anticancer drug in the tumor, was tested in mice with implanted MBA-MB-231 breast tumors. This therapy was able to cause a reduction in the size of the tumors during the treatment period. It was shown that L-methioninase-annexin V was uniformly bound at the blood vessel surface in the tumor and also that there was a substantial cutoff of blood flowing through the treated tumor, consistent with the therapy's design.
View Article and Find Full Text PDFPurpose: Implantable-grade polyetheretherketone (PEEK-OPTIMA®) is a high-performance thermoplastic that has been used in implant devices such as spinal-fusion cages since its introduction in 1999. Here, a new porous PEEK version was investigated.
Methods: Porous PEEK was fabricated using industrial scale relevant methods of compounding with porogen filler, extrusion, and subsequent extraction with water at supercritical temperatures and pressures.
As the field of tissue engineering develops, researchers are faced with a large number of degrees of freedom regarding the choice of material, architecture, seeding, and culturing. To evaluate the effectiveness of a tissue-engineered strategy, histology is typically done by physically slicing and staining a construct (crude, time-consuming, and unreliable). However, due to recent advances in high-resolution biomedical imaging, microcomputed tomography (μCT) has arisen as a quick and effective way to evaluate samples, while preserving their structure in the original state.
View Article and Find Full Text PDFCurrent tissue engineering technologies involve the seeding of cells on porous scaffolds, within which the cells can proliferate and differentiate, when cultured in bioreactors. The flow of culture media through the scaffolds generates stresses that are important for both cell differentiation and cell growth. A recent study [Appl.
View Article and Find Full Text PDFWe used a pin-on-disc tribometer to measure the friction coefficient of both pristine and mechanically damaged cartilage samples in the presence of different lubricant solutions. The experimental set up maximizes the lubrication mechanism due to interstitial fluid pressurization. In phosphate buffer solution (PBS), the measured friction coefficient increases with the level of damage.
View Article and Find Full Text PDFJ Long Term Eff Med Implants
August 2013
Polyethylene glycol (PEG) performs multiple roles for bone tissue engineering scaffolds. Successful in vivo implantation for long periods of time requires a scaffold that is biocompatible, osteoconductive, osteoinductive, and promotes cell recruitment and attachment. PEG has significant advantages such as excellent biocompatibility and flexibility, but certain drawbacks such as poor mechanical strength and cell attachment limit its use as a plain scaffold.
View Article and Find Full Text PDFThe initial seeding density is a critical variable in functional tissue engineering. A sufficient number of cells uniformly distributed throughout the scaffold is a key requirement to achieve homogeneous extracellular matrix deposition in vitro. However, high initial seeding densities might have negative repercussions on nutrient availability, cellular metabolism, and cell viability.
View Article and Find Full Text PDFThe present study combines chemical and mechanical stimuli to modulate the osteogenic differentiation of mesenchymal stem cells (MSCs). Arg-Gly-Asp (RGD) peptides incorporated into biomaterials have been shown to upregulate MSC osteoblastic differentiation. However, these effects have been assessed under static culture conditions, while it has been reported that flow perfusion also has an enhancing effect on MSC osteoblastic differentiation.
View Article and Find Full Text PDFThe friction coefficient between wet articular cartilage surfaces was measured using a pin-on-disk tribometer adopting different testing configurations: cartilage-on-pin vs. alumina-on-disk (CA); cartilage-on-pin vs. cartilage-on-disk (CC); and alumina-on-pin vs.
View Article and Find Full Text PDFFlow-induced shear stresses have been found to be a stimulatory factor in pre-osteoblastic cells seeded in 3D porous scaffolds and cultured under continuous flow perfusion. However, due to the complex internal structure of porous scaffolds, analytical estimation of the local shear forces is impractical. The primary goal of this work is to investigate the shear stress distributions within Poly(l-lactic acid) scaffolds via computation.
View Article and Find Full Text PDFPoly(L-lactic acid) (PLLA) is widely used in tissue-engineering applications because of its degradation characteristics and mechanical properties, but it possesses an inert nature, affecting cell-matrix interactions. It is desirable to modify the surface of PLLA to create biomimetic scaffolds that will enhance tissue regeneration. We prepared a functionally flexible, biomimetic scaffold by derivatizing the surface of PLLA foams into primary amines, activated pyridylthiols, or sulfhydryl groups, allowing a wide variety of modifications.
View Article and Find Full Text PDFArg-Gly-Asp (RGD) has been widely utilized to increase cell adhesion to three-dimensional scaffolds for tissue engineering. However, cell seeding on these scaffolds has only been carried out statically, which yields low cell seeding efficiencies. We have characterized, for the first time, the seeding of rat mesenchymal stem cells on RGD-modified poly(L-lactic acid) (PLLA) foams using oscillatory flow perfusion.
View Article and Find Full Text PDFThe objective of this study was to investigate if the in vitro pre-culture period in osteogenic media of rat mesenchymal stem cells (MSCs), influences their ability to regenerate bone when implanted in a critical size cranial defect. MSCs were harvested from the bone marrow of 6-8 weeks old male Fisher rats and expanded in vitro in osteogenic media for different time periods (4, 10, and 16 days) in tissue culture plates (TCP), seeded on sintered titanium fiber meshes without the extracellular matrix (ECM) generated in vitro, and implanted in the rat cranium after 12 h. Thirty two adult Fisher rats received the implants, divided in four groups.
View Article and Find Full Text PDFEngineered bone grafts have been generated in static and dynamic systems by seeding and culturing osteoblastic cells on 3-D scaffolds. Seeding determines initial cellularity and cell spatial distribution throughout the scaffold, and affects cell-matrix interactions. Static seeding often yields low seeding efficiencies and poor cell distributions; thus creating a need for techniques that can improve these parameters.
View Article and Find Full Text PDFMuskuloskeletal tissue includes bone, cartilage, ligament, skeletal muscle and tendons. These tissues malfunction either due to a natural injury, trauma, or a disorder. In all cases natural regeneration needs to be enhanced by medication and, in many instances, by surgery.
View Article and Find Full Text PDFThis study instituted a unique approach to bone tissue engineering by combining effects of mechanical stimulation in the form of fluid shear stresses and the presence of bone-like extracellular matrix (ECM) on osteodifferentiation. Rat marrow stromal cells (MSCs) harvested from bone marrow were cultured on titanium (Ti) fiber mesh discs for 12 days in a flow perfusion system to generate constructs containing bone-like ECM. To observe osteodifferentiation and bone-like matrix deposition, these decellularized constructs and plain Ti fiber meshes were seeded with MSCs (Ti/ECM and Ti, respectively) and cultured in the presence of fluid shear stresses either with or without the osteogenic culture supplement dexamethasone.
View Article and Find Full Text PDF