IEEE Trans Syst Man Cybern B Cybern
June 2007
Support vector machines (SVMs) are one of the most popular methodologies for the design of pattern classification systems with sound theoretical foundations and high generalizing performance. The SVM framework focuses on linear and nonlinear models that maximize the separating margin between objects belonging in different classes. This paper extends the SVM modeling context toward the development of additive models that combine the simplicity and transparency/interpretability of linear classifiers with the generalizing performance of nonlinear models.
View Article and Find Full Text PDF