Purpose: We analyzed the role of N-cadherin in maintaining proper architecture and function of corneal endothelium.
Methods: To achieve specific removal of N-cadherin from corneal endothelium, we bred mice carrying a floxed N-cadherin gene with those expressing the Cre-recombinase gene under the control of P0 promoter. The corneal structure was analyzed by immunostaining for cell junction proteins as well as by electron microscopy.
Background: The inner ear and epibranchial ganglia of vertebrates arise from a shared progenitor domain that is induced by FGF signalling, the posterior placodal area (PPA), before being segregated by Wnt signalling. One of the first genes activated in the PPA is the transcription factor Pax2. Loss-of- and gain-of function studies have defined a role for Pax2 in placodal morphogenesis and later inner ear development, but have not addressed the role Pax2 plays during the formation and maintenance of the PPA.
View Article and Find Full Text PDFCancer cells depend on chemotaxis for invasion and frequently overexpress and/or activate Src. We previously reported that v-Src accelerates motility by promoting phosphoinositide 3-kinase (PI3-K) signalling but abrogates chemotaxis. We here addressed the mechanism of the loss of chemotactic response to platelet-derived growth factor (PDGF) gradients in fibroblasts harbouring a thermosensitive v-Src kinase.
View Article and Find Full Text PDF