Publications by authors named "Vassen W"

We observe a dramatic difference in optical line shapes of a ^{4}He Bose-Einstein condensate and a ^{3}He degenerate Fermi gas by measuring the 1557-nm 2 ^{3}S-2 ^{1}S magnetic dipole transition (8 Hz natural linewidth) in an optical dipole trap. The 15 kHz FWHM condensate line shape is only broadened by mean field interactions, whereas the degenerate Fermi gas line shape is broadened to 75 kHz FWHM due to the effect of Pauli exclusion on the spatial and momentum distributions. The asymmetric optical line shapes are observed in excellent agreement with line shape models for the quantum degenerate gases.

View Article and Find Full Text PDF

We have measured the forbidden 2 (3)S(1)→2 (1)P(1) transition at 887 nm in a quantum degenerate gas of metastable (4)He atoms confined in an optical dipole trap. The determined transition frequency is 338 133 594.4 (0.

View Article and Find Full Text PDF

Precision spectroscopy of simple atomic systems has refined our understanding of the fundamental laws of quantum physics. In particular, helium spectroscopy has played a crucial role in describing two-electron interactions, determining the fine-structure constant and extracting the size of the helium nucleus. Here we present a measurement of the doubly forbidden 1557-nanometer transition connecting the two metastable states of helium (the lowest energy triplet state 2 (3)S(1) and first excited singlet state 2 (1)S(0)), for which quantum electrodynamic and nuclear size effects are very strong.

View Article and Find Full Text PDF

We present experimentally determined scattering matrix elements of birefringent rutile particles in water as a function of the scattering angle for a wavelength of 633 nm (in air). These elements are compared with the results of T-matrix calculations for prolate spheroids. For the diagonal matrix elements the results of the T-matrix calculations are in good agreement with those of the measurements.

View Article and Find Full Text PDF

Fifty years ago, Hanbury Brown and Twiss (HBT) discovered photon bunching in light emitted by a chaotic source, highlighting the importance of two-photon correlations and stimulating the development of modern quantum optics. The quantum interpretation of bunching relies on the constructive interference between amplitudes involving two indistinguishable photons, and its additive character is intimately linked to the Bose nature of photons. Advances in atom cooling and detection have led to the observation and full characterization of the atomic analogue of the HBT effect with bosonic atoms.

View Article and Find Full Text PDF

We report the observation of simultaneous quantum degeneracy in a dilute gaseous Bose-Fermi mixture of metastable atoms. Sympathetic cooling of helium-3 (fermion) by helium-4 (boson), both in the lowest triplet state, allows us to produce ensembles containing more than 10(6) atoms of each isotope at temperatures below 1 microK, and achieve a fermionic degeneracy parameter of T/TF = 0.45.

View Article and Find Full Text PDF

We simultaneously confine fermionic metastable 3He atoms and bosonic metastable 4He atoms in a magneto-optical trap. The trapped clouds, containing up to 1.5 x 10(8) atoms of each isotope, are characterized by measuring ions and metastable helium atoms escaping from the trap.

View Article and Find Full Text PDF

We observe vibrational states by photoassociation spectroscopy of cold He(2 ^{3}S) atoms. Photoassociation resonances are detected as peaks in the Penning ionization rate over a frequency range of 20 GHz below the atomic 2 ^{3}S_{1}-2 ^{3}P_{2} transition frequency. We have observed three vibrational series, of which two can be identified.

View Article and Find Full Text PDF