Publications by authors named "Vasos P"

Hyperpolarized water in dissolution dynamic nuclear polarization (dDNP) experiments has emerged as a promising method for enhancing nuclear magnetic resonance (NMR) signals, particularly in studies of proteins and peptides. Herein, we focus on the application of "proton exchange-doubly relayed" nuclear Overhauser effects (NOE) from hyperpolarized water to achieve positive signal enhancement of methyl groups in the side chain of an alanine-glycine peptide. In particular, we show a cascade hyperpolarization transfer.

View Article and Find Full Text PDF

Living systems rely on molecular building blocks with low structural symmetry. Therefore, constituent amino acids and nucleotides yield short-lived nuclear magnetic responses to electromagnetic radiation. Magnetic signals are at the basis of molecular imaging, structure determination and interaction studies.

View Article and Find Full Text PDF

Real-time imaging of free-radical formation is important in physical chemistry, biochemistry, and radiobiology, especially for the study of radiation dose-rate effects. Herein, we show for the first time that the formation of free radicals during the time course of a chemical reaction can be imaged through NMR relaxation measurements of water protons in the Earth's magnetic field, in an open-coil spectrometer. The relaxation rate constants of water magnetisation are enhanced as reactions leading to the formation of hydroxyl radicals and oxygen proceed on the timescale of tens of minutes.

View Article and Find Full Text PDF

Imaging the molecular kinetics of antioxidants by magnetic resonance can contribute to the mechanistic understanding of therapeutic approaches. Magnetic resonance detection of the response to flashes of oxidative stress requires sequential spectroscopy on the same time scale on which reactive oxygen species are generated. To this effect, we propose a single-polarization multiple-detection stroboscopic experiment.

View Article and Find Full Text PDF

Nuclear magnetization storage, once limited by longitudinal and transverse relaxation lifetimes, and , can be prolonged by symmetry-adapted nuclear spin order, i.e. long-lived states (LLS) and long-lived coherences (LLC), which have significantly extended relaxation time constants compared to and , respectively.

View Article and Find Full Text PDF

Long-lived spin order-based approaches for magnetic resonance rely on the transition between two magnetic environments of different symmetries, one governed by the magnetic field of the spectrometer and the other where this strong magnetic field is inconsequential. Research on the excitation of magnetic-symmetry transitions in nuclear spins is a scientific field that debuted in Southampton in the year 2000. We advanced in this field carrying the baggage of pre-established directions in NMR spectroscopy.

View Article and Find Full Text PDF
Article Synopsis
  • Recent advancements in molecular symmetry-based techniques for magnetic resonance are significantly impacting areas like molecular imaging, quantum computing, and beyond.
  • The concept of effective spin symmetry, first observed in 2004, has led to the increased use of resilient spin states that allow for more detailed studies of slow processes that weren't easily accessible before.
  • Long-lived states and coherences have been developed to greatly surpass the traditional limitations of relaxation times, enabling researchers to explore new molecular behaviors and future applications in various fields.
View Article and Find Full Text PDF

Nuclear magnetization storage in biologically-relevant molecules opens new possibilities for the investigation of metabolic pathways, provided the lifetimes of magnetization are sufficiently long. Dissolution-dynamic nuclear polarization-based spin-order enhancement, sustained by long-lived states can measure the ratios between concentrations of endogenous molecules on a cellular pathway. These ratios can be used as meters of enzyme function.

View Article and Find Full Text PDF

We introduce a new symmetry-based method for structural investigations of areas surrounding water-exchanging hydrogens in biomolecules by liquid-state nuclear magnetic resonance spectroscopy. Native structures of peptides and proteins can be solved by NMR with fair resolution, with the notable exception of labile hydrogen sites. The reason why biomolecular structures often remain elusive around exchangeable protons is that the dynamics of their exchange with the solvent hampers the observation of their signals.

View Article and Find Full Text PDF

Protein and peptide interactions are characterized in the liquid state by multidimensional NMR spectroscopy experiments, which can take hours to record. We show that starting from hyperpolarized HDO, two-dimensional (2D) proton correlation maps of a peptide, either free in solution or interacting with liposomes, can be acquired in less than 60 s. In standard 2D NMR spectroscopy without hyperpolarization, the acquisition time required for similar spectral correlations is on the order of hours.

View Article and Find Full Text PDF

Recently developed short-pulsed laser sources garner high dose-rate beams such as energetic ions and electrons, x rays, and gamma rays. The biological effects of laser-generated ion beams observed in recent studies are different from those triggered by radiation generated using classical accelerators or sources, and this difference can be used to develop new strategies for cancer radiotherapy. High-power lasers can now deliver particles in doses of up to several Gy within nanoseconds.

View Article and Find Full Text PDF

Background: Reactive oxygen species sustain tumorigenesis and cancer progression through deregulated redox signalling which also sensitizes cancer cells to therapy. Photodynamic therapy (PDT) is a promising anti-cancer therapy based on a provoked singlet oxygen burst, exhibiting a better toxicological profile than chemo- and radiotherapy. Important gaps in the knowledge on underlining molecular mechanisms impede on its translation towards clinical applications.

View Article and Find Full Text PDF

Water uptake in vesicles and the subsequent exchange between water protons and amide -NH protons in amino acids can be followed by a new, highly sensitive, type of magnetic resonance spectroscopy: dynamic nuclear polarisation (DNP)-enhanced NMR in the liquid state. Water hydrogen atoms are detected prior to and after their transfer to molecular sites in peptides and proteins featuring highly-accessible proton-exchangeable groups, as is the case for the -NH groups of intrinsically disordered proteins. The detected rates for amide proton-water proton exchange can be modulated by membrane-crossing rates, when a membrane channel is interposed.

View Article and Find Full Text PDF

Long-lived states of nuclear spin order were used for the first time to probe interactions between molecules and diamagnetic metal ions. Proton spin states with lifetimes twice as long as the spin-lattice relaxation time constants of the same nuclei were promoted on the methoxyphenyl and tolyl substituents of a 1,3,4-oxadiazole derivative. The transient interaction of this oxadiazole derivative with silver(I) ions significantly speeds up the relaxation rate constants of proton long-lived states.

View Article and Find Full Text PDF

Pyruvate membrane crossing and its lactate dehydrogenase-mediated conversion to lactate in cells featuring different levels of expression of membrane monocarboxylate transporters (MCT4) were probed by dissolution dynamic nuclear polarization-enhanced NMR. Hyperpolarized C-1-labeled pyruvate was transferred to suspensions of rodent tumor cell carcinoma, cell line 39. The pyruvate-to-lactate conversion rate monitored by dissolution dynamic nuclear polarization-NMR in carcinoma cells featuring native MCT4 expression level was lower than the rate observed for cells in which the human MCT4 gene was overexpressed.

View Article and Find Full Text PDF

The main limitation of NMR-based investigations is low sensitivity. This prompts for long acquisition times, thus preventing real-time NMR measurements of metabolic transformations. Hyperpolarization via dissolution DNP circumvents part of the sensitivity issues thanks to the large out-of-equilibrium nuclear magnetization stemming from the electron-to-nucleus spin polarization transfer.

View Article and Find Full Text PDF

Long-lived coherences (LLC's) are detectable magnetisation modes with favourable relaxation times that translate as sharp resonances upon Fourier transform. The frequency domain of LLC's was previously limited to the range of J-couplings within pairs of homonuclear spins. LLC evolution at high magnetic fields needs to be sustained by radio-frequency irradiation.

View Article and Find Full Text PDF

(1)H NMR is a nonbiased technique for the quantification of small molecules that could result in the identification and characterization of potential biomarkers with prognostic value and contribute to better understand pathophysiology of diseases. In this study, we used (1)H NMR spectroscopy to analyze the urinary metabolome of patients with acute intermittent porphyria (AIP), an inherited metabolic disorder of heme biosynthesis in which an accumulation of the heme precursors 5-aminolaevulinic acid (ALA) and porphobilinogen (PBG) promotes sudden neurovisceral attacks, which can be life-threatening. Our objectives were (1) to demonstrate the usefulness of (1)H NMR to identify and quantify ALA and PBG in urines from AIP patients and (2) to identify metabolites that would predict the response to AIP crisis treatment and reflect differential metabolic reprogramming.

View Article and Find Full Text PDF

Long-lived states (LLS) are relaxation-favored spin population distributions of J-coupled magnetic nuclei. LLS were measured, along with classical (1)H and (15)N relaxation rate constants, in amino acids of the N-terminal Unique domain of the c-Src kinase, which is disordered in vitro under physiological conditions. The relaxation rates of LLS can probe motions and interactions in biomolecules.

View Article and Find Full Text PDF

Among the different fields of research in nuclear magnetic resonance (NMR) which are currently investigated in the Laboratory of Biomolecular Magnetic Resonance (LRMB), two subjects that are closely related to each other are presented in this article. On the one hand, we show how to populate long-lived states (LLS) that have long lifetimes T(LLS) which allow one to go beyond the usual limits imposed by the longitudinal relaxation time T1. This makes it possible to extend NMR experiments to longer time-scales.

View Article and Find Full Text PDF

The relaxation of long-lived states (LLS) corresponds to the slow return to statistical thermal equilibrium between symmetric and antisymmetric proton spin states. This process is remarkably sensitive to the presence of external spins and can be used to obtain information about partial unfolding of proteins. We detected the appearance of a destabilized conformer of ubiquitin when urea is added to the protein in its native state.

View Article and Find Full Text PDF

The polarisation of abundant protons, rather than dilute nuclei with low gyromagnetic ratios, can be enhanced in less than 10 min using dissolution DNP and converted into a long-lived state delocalised over an ensemble of three coupled protons. The process is more straightforward than the hyperpolarisation of heteronuclei followed by magnetisation transfer to protons.

View Article and Find Full Text PDF

A high throughput method was designed to produce hyperpolarized gases by combining low-temperature dynamic nuclear polarization with a sublimation procedure. It is illustrated by applications to 129Xe nuclear magnetic resonance in xenon gas, leading to a signal enhancement of 3 to 4 orders of magnitude compared to the room-temperature thermal equilibrium signal at 7.05 T.

View Article and Find Full Text PDF