Global eradication of poliovirus remains elusive, and it is critical to develop next generation vaccines and antivirals. In support of this goal, we map the epitope of human monoclonal antibody 9H2 which is able to neutralize the three serotypes of poliovirus. Using cryo-EM we solve the near-atomic structures of 9H2 fragments (Fab) bound to capsids of poliovirus serotypes 1, 2, and 3.
View Article and Find Full Text PDFWhite-nose syndrome (WNS), responsible for the mass mortality of North American bats, lacks economically viable and practical models for infection, the causative agent of WNS. Not only are many susceptible North American insectivorous bats nearing extinction and, thus, scarce for experimental studies, but they are difficult to care for and maintain in captivity because of their specialized habitats and diets. In this study, we explored porcine ears as a potential substrate for studying infection development and the dynamics of growth in the laboratory.
View Article and Find Full Text PDFUnderstanding the dynamics of white-nose syndrome spread in time and space is an important component for the disease epidemiology and control. We reported earlier that a novel partitivirus, Pseudogymnoascus destructans partitivirus-pa, had infected the North American isolates of Pseudogymnoascus destructans, the fungal pathogen that causes white-nose syndrome in bats. We showed that the diversity of the viral coat protein sequences is correlated to their geographical origin.
View Article and Find Full Text PDFWhite-nose syndrome is one of the most lethal wildlife diseases, killing over 5 million North American bats since it was first reported in 2006. The causal agent of the disease is a psychrophilic filamentous fungus, Pseudogymnoascus destructans. The fungus is widely distributed in North America and Europe and has recently been found in some parts of Asia, but interestingly, no mass mortality is observed in European or Asian bats.
View Article and Find Full Text PDFViruses are most frequently discovered because they cause disease. To expand knowledge of plant-associated viruses beyond these narrow constraints, non-cultivated plants of the Tallgrass Prairie of the United States were systematically surveyed for evidence of viruses. This report discusses putative viruses of the family Secoviridae identified by the survey.
View Article and Find Full Text PDFThe diversity of viruses associated with non-cultivated plants was assessed from plant samples collected in the Tallgrass Prairie Preserve of northeastern Oklahoma, USA. The samples were processed to determine the sequences of nucleic acids extracted from the virus-like particle fraction of plant homogenates. Sequences from 95 specimens of 52 plant species included those of probable origin from the genomes of plants (including retroelements), bacteria, fungi, other organisms, and viruses.
View Article and Find Full Text PDFTo test the hypothesis that many viruses remain to be discovered in plants, a procedure was developed to sequence nucleic acids cloned randomly from virus-like particle fractions of plant homogenates. As a test of the efficiency of the procedure we targeted Ambrosia psilostachya, western ragweed, plants growing at the Tallgrass Prairie Preserve of northeastern Oklahoma. Amplifiable nucleic acid was found in the fractions from six of twelve specimens and sequences were characterized from four of them.
View Article and Find Full Text PDF