Publications by authors named "Vasisht R Tadigotla"

Non-small cell lung cancer (NSCLC) is the most prevalent form of lung cancer and its molecular landscape has been extensively studied. The most common genetic alterations in NSCLC are mutations within the epidermal growth factor receptor () gene, with frequencies between 10-40%. There are several molecular targeted therapies for patients harboring these mutations.

View Article and Find Full Text PDF

Background: Peanut oral immunotherapy (PNOIT) induces persistent tolerance to peanut in a subset of patients and induces specific antibodies that might play a role in clinical protection. However, the contribution of induced antibody clones to clinical tolerance in PNOIT is unknown.

Objective: We hypothesized that PNOIT induces a clonal, allergen-specific B-cell response that could serve as a surrogate for clinical outcomes.

View Article and Find Full Text PDF

Pausing of transcription is an important step of regulation of gene expression in bacteria and eukaryotes. Here we uncover a factor-independent mechanism of transcription pausing, which is determined by the ability of the elongating RNA polymerase to recognize the sequence of the RNA-DNA hybrid. We show that, independently of thermodynamic stability of the elongation complex, RNA polymerase directly 'senses' the shape and/or identity of base pairs of the RNA-DNA hybrid.

View Article and Find Full Text PDF

Bacterial promoters are recognized by RNA polymerase (RNAP) σ subunit, which specifically interacts with the -10 and -35 promoter elements. Here, we provide evidence that the β' zipper, an evolutionarily conserved loop of the largest subunit of RNAP core, interacts with promoter spacer, a DNA segment that separates the -10 and -35 promoter elements, and facilitates the formation of stable closed promoter complex. Depending on the spacer sequence, the proposed interaction of the β' zipper with the spacer can also facilitate open promoter complex formation and even substitute for interactions of the σ subunit with the -35 element.

View Article and Find Full Text PDF

The transcription of the genetic information encoded in DNA into RNA is performed by RNA polymerase (RNAP), a complex molecular motor, highly conserved across species. Despite remarkable progress in single-molecule techniques revealing important mechanistic details of transcription elongation (TE) with up to base-pair resolution, some of the results and interpretations of these studies are difficult to reconcile, and have not yet led to a minimal unified picture of transcription. We propose a simple model that accounts quantitatively for many of the experimental observations.

View Article and Find Full Text PDF

Background: Transcription is the first step of gene expression and is characterized by a high fidelity of RNA synthesis. During transcription, the RNA polymerase active centre discriminates against not just non-complementary ribo NTP substrates but also against complementary 2'- and 3'-deoxy NTPs. A flexible domain of the RNA polymerase active centre, the Trigger Loop, was shown to play an important role in this process, but the mechanisms of this participation remained elusive.

View Article and Find Full Text PDF

Transcription of the bacterial genome by the RNA polymerase must terminate at specific points. Transcription can be terminated by Rho factor, an essential protein in enterobacteria. We used the antibiotic bicyclomycin, which inhibits Rho, to assess its role on a genome-wide scale.

View Article and Find Full Text PDF

We present a statistical mechanics approach for the prediction of backtracked pauses in bacterial transcription elongation derived from structural models of the transcription elongation complex (EC). Our algorithm is based on the thermodynamic stability of the EC along the DNA template calculated from the sequence-dependent free energy of DNA-DNA, DNA-RNA, and RNA-RNA base pairing associated with (i) the translocational and size fluctuations of the transcription bubble; (ii) changes in the associated DNA-RNA hybrid; and (iii) changes in the cotranscriptional RNA secondary structure upstream of the RNA exit channel. The calculations involve no adjustable parameters except for a cutoff used to discriminate paused from nonpaused complexes.

View Article and Find Full Text PDF