The pathophysiology of affective disorders-particularly circuit-level mechanisms underlying bidirectional, periodic affective state transitions-remains poorly understood. In patients, disruptions of sleep and circadian rhythm can trigger transitions to manic episodes, whereas depressive states are reversed. Here, we introduce a hybrid automated sleep deprivation platform to induce transitions of affective states in mice.
View Article and Find Full Text PDFMany neuronal populations that release fast-acting excitatory and inhibitory neurotransmitters in the brain also contain slower-acting neuropeptides. These facultative peptidergic cell types are common, but it remains uncertain whether neurons that solely release peptides exist. Our fluorescence in situ hybridization, genetically targeted electron microscopy, and electrophysiological characterization suggest that most neurons of the non-cholinergic, centrally projecting Edinger-Westphal nucleus in mice are obligately peptidergic.
View Article and Find Full Text PDFMammalian axonal development begins in embryonic stages and continues postnatally. After birth, axonal proteomic landscape changes rapidly, coordinated by transcription, protein turnover, and post-translational modifications. Comprehensive profiling of axonal proteomes across neurodevelopment is limited, with most studies lacking cell-type and neural circuit specificity, resulting in substantial information loss.
View Article and Find Full Text PDFAdvanced technologies for controlled delivery of light to targeted locations in biological tissues are essential to neuroscience research that applies optogenetics in animal models. Fully implantable, miniaturized devices with wireless control and power-harvesting strategies offer an appealing set of attributes in this context, particularly for studies that are incompatible with conventional fiber-optic approaches or battery-powered head stages. Limited programmable control and narrow options in illumination profiles constrain the use of existing devices.
View Article and Find Full Text PDFEscaping aversive stimuli is essential for complex organisms, but prolonged exposure to stress leads to maladaptive learning. Stress alters neuronal activity and neuromodulatory signaling in distributed networks, modifying behavior. Here, we describe changes in dopaminergic neuron activity and signaling following aversive learning in a learned helplessness paradigm in mice.
View Article and Find Full Text PDFBackground: Ketamine elicits rapid onset antidepressant effects in patients with clinical depression through mechanisms hypothesized to involve the genesis of neocortical dendritic spines and synapses. Yet, the observed changes in dendritic spine morphology usually emerge well after ketamine clearance, raising questions about the link between rapid behavioral effects of ketamine and plasticity.
Methods: Here, we used two-photon glutamate uncaging/imaging to focally induce spinogenesis in the medial prefrontal cortex, directly interrogating baseline and ketamine-associated plasticity of deep layer pyramidal neurons in C57BL/6 mice.
LRRK2 is a kinase expressed in striatal spiny projection neurons (SPNs), cells which lose dopaminergic input in Parkinson's disease (PD). R1441C and G2019S are the most common pathogenic mutations of LRRK2. How these mutations alter the structure and function of individual synapses on direct and indirect pathway SPNs is unknown and may reveal pre-clinical changes in dopamine-recipient neurons that predispose toward disease.
View Article and Find Full Text PDFNonreceptor protein tyrosine kinases (NRTKs) are essential for cellular homeostasis and thus are a major focus of current drug discovery efforts. Peptide substrates that can enhance lanthanide ion luminescence upon tyrosine phosphorylation enable rapid, sensitive screening of kinase activity, however design of suitable substrates that can distinguish between tyrosine kinase families is a huge challenge. Despite their different substrate preferences, many NRTKs are structurally similar even between families.
View Article and Find Full Text PDF