Publications by authors named "Vasily V Zhakhovsky"

Boundary conditions required for numerical solution of the Boltzmann kinetic equation (BKE) for mass/heat transfer between evaporation and condensation surfaces are analyzed by comparison of BKE results with molecular dynamics (MD) simulations. Lennard-Jones potential with parameters corresponding to solid argon is used to simulate evaporation from the hot side, nonequilibrium vapor flow with a Knudsen number of about 0.02, and condensation on the cold side of the condensed phase.

View Article and Find Full Text PDF

Laser-produced surface nanostructures show considerable promise for many applications while fundamental questions concerning the corresponding mechanisms of structuring are still debated. Here, we present a simple physical model describing those mechanisms happened in a thin metal film on dielectric substrate irradiated by a tightly focused ultrashort laser pulse. The main ingredients included into the model are (i) the film-substrate hydrodynamic interaction, melting and separation of the film from substrate with velocity increasing with increase of absorbed fluence; (ii) the capillary forces decelerating expansion of the expanding flying film; and (iii) rapid freezing into a solid state if the rate of solidification is comparable or larger than hydrodynamic velocities.

View Article and Find Full Text PDF

The development of condensed-phase detonation instabilities is simulated using moving window molecular dynamics and a generic AB model of a high explosive. It is found that an initially planar detonation front with one-dimensional flow can become unstable through development of transverse perturbations resulting in highly inhomogeneous and complex two- and three-dimensional distributions of pressure and other variables within the detonation front. Chemical reactions are initiated in localized transverse shock fronts and Mach stems with a pressure and temperature higher than those predicted by classic Zel'dovich, von Neumann, and Doering detonation theory.

View Article and Find Full Text PDF

The evolution of orientation-dependent metastable states during shock-induced solid-liquid phase transitions in crystalline Al is followed using moving window molecular dynamics simulations. The orientation-dependent transition pathways towards an orientation-independent final state Hugoniot include both "cold melting" followed by recrystallization in [110]- and [111]-oriented shock waves and crystal overheating followed by melting in [100] shock waves. The orientation-dependent dynamics take place within a zone that can extend up to hundreds of nanometers behind the shock front.

View Article and Find Full Text PDF

By decoupling time and length scales in moving window molecular dynamics shock-wave simulations, a new regime of shock-wave propagation is uncovered characterized by a two-zone elastic-plastic shock-wave structure consisting of a leading elastic front followed by a plastic front, both moving with the same average speed and having a fixed net thickness that can extend to microns. The material in the elastic zone is in a metastable state that supports a pressure that can substantially exceed the critical pressure characteristic of the onset of the well-known split-elastic-plastic, two-wave propagation. The two-zone elastic-plastic wave is a general phenomenon observed in simulations of a broad class of crystalline materials and is within the reach of current experimental techniques.

View Article and Find Full Text PDF