Ensembl (www.ensembl.org) is an open platform integrating publicly available genomics data across the tree of life with a focus on eukaryotic species related to human health, agriculture and biodiversity.
View Article and Find Full Text PDFNucleic Acids Res
January 2024
Ensembl (https://www.ensembl.org) is a freely available genomic resource that has produced high-quality annotations, tools, and services for vertebrates and model organisms for more than two decades.
View Article and Find Full Text PDFEnsembl Genomes (https://www.ensemblgenomes.org) provides access to non-vertebrate genomes and analysis complementing vertebrate resources developed by the Ensembl project (https://www.
View Article and Find Full Text PDFThe Eukaryotic Pathogen, Vector and Host Informatics Resource (VEuPathDB, https://veupathdb.org) represents the 2019 merger of VectorBase with the EuPathDB projects. As a Bioinformatics Resource Center funded by the National Institutes of Health, with additional support from the Welllcome Trust, VEuPathDB supports >500 organisms comprising invertebrate vectors, eukaryotic pathogens (protists and fungi) and relevant free-living or non-pathogenic species or hosts.
View Article and Find Full Text PDFMany problems of modern genetics and functional genomics require the assessment of functional effects of sequence variants, including gene expression changes. Machine learning is considered to be a promising approach for solving this task, but its practical applications remain a challenge due to the insufficient volume and diversity of training data. A promising source of valuable data is a saturation mutagenesis massively parallel reporter assay, which quantitatively measures changes in transcription activity caused by sequence variants.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
May 2019
We investigated the diversity of CRISPR spacers of Thermus communities from two locations in Italy, two in Chile and one location in Russia. Among the five sampling sites, a total of more than 7200 unique spacers belonging to different CRISPR-Cas systems types and subtypes were identified. Most of these spacers are not found in CRISPR arrays of sequenced Thermus strains.
View Article and Find Full Text PDFCRISPR interference occurs when a protospacer recognized by the CRISPR RNA is destroyed by Cas effectors. In Type I CRISPR-Cas systems, protospacer recognition can lead to «primed adaptation» - acquisition of new spacers from in cis located sequences. Type I CRISPR-Cas systems require the presence of a trinucleotide protospacer adjacent motif (PAM) for efficient interference.
View Article and Find Full Text PDFTarget binding by CRISPR-Cas ribonucleoprotein effectors is initiated by the recognition of double-stranded PAM motifs by the Cas protein moiety followed by destabilization, localized melting, and interrogation of the target by the guide part of CRISPR RNA moiety. The latter process depends on seed sequences, parts of the target that must be strictly complementary to CRISPR RNA guide. Mismatches between the target and CRISPR RNA guide outside the seed have minor effects on target binding, thus contributing to off-target activity of CRISPR-Cas effectors.
View Article and Find Full Text PDFBackground: Gray whale, Eschrichtius robustus (E. robustus), is a single member of the family Eschrichtiidae, which is considered to be the most primitive in the class Cetacea. Gray whale is often described as a "living fossil".
View Article and Find Full Text PDF