Foodborne infections are an important global health problem due to their high prevalence and potential for severe complications. Bacterial contamination of meat during processing at the enterprise can be a source of foodborne infections. Polymeric coatings with antibacterial properties can be applied to prevent bacterial contamination.
View Article and Find Full Text PDFHarmful algal blooms in freshwater reservoirs became a steady phenomenon in recent decades, so instruments for monitoring water quality in real time are of high importance. Modern satellite remote sensing is a powerful technique for mapping large areas but cannot provide depth-resolved data on algal concentrations. As an alternative to satellite techniques, laser remote sensing is a perspective technique for depth-resolved studies of fresh or seawater.
View Article and Find Full Text PDFForward stimulated Raman scattering (SRS) induced by focused 400 nm pulses chirped to different pulse durations is observed in water and heavy water. The first Stokes Raman peak shift is shown to be tunable in the range of ${{3500 {-} 4200}}\;{{\rm{cm}}^{- 1}}$ in water and ${{2450 {-} 3250}}\;{{\rm{cm}}^{- 1}}$ in heavy water. It is demonstrated that the Stokes peak shift increases for shorter pulse durations and higher intensities.
View Article and Find Full Text PDFThis publisher's note contains corrections to Opt. Lett.45, 5624 (2020)OPLEDP0146-959210.
View Article and Find Full Text PDFFor the first time, to the best of our knowledge, stimulated Raman scattering (SRS) of picosecond laser pulses without optical breakdown has been detected simultaneously (as the first Stokes and anti-Stokes paired components) at ∼3430 and ∼3000 vibrations of water OH band. These components were generated coaxially to the pump beam in the forward direction as axial and conical ring beams, respectively, when the pump beam was focused at the water-air interface. We suggest an explanation of these new SRS phenomena by non-collinear four-wave parametric interaction.
View Article and Find Full Text PDFFor the first time, to the best of our knowledge, we demonstrated a new type of Raman laser with asymmetrical cavity at the liquid-air interface. We observed an intriguing stimulated Raman scattering (SRS) threshold dependence when the pumping laser beam waist was transferred through the liquid-air interface, and we demonstrated a paradoxical 30-fold SRS threshold reduction in the vicinity of the water-air surface. The minimum SRS threshold was achieved when the pumping laser beam waist was located at the liquid surface.
View Article and Find Full Text PDFThe feasibility of in situ quantitative multielemental analysis and production failures detection by laser induced breakdown spectroscopy (LIBS) has been demonstrated during direct energy deposition process in additive manufacturing. Compact LIBS probe was developed and equipped with the laser cladding head installed at industrial robot for real-time chemical quantitative analysis of key components (Ni, W) during the synthesis of high wear resistant coatings of nickel alloy reinforced with tungsten carbide particles. Owing to non-uniform distribution of tungsten carbide grains in the upper surface layer the only acceptable choice for LIBS sampling was made to the melt pool at growing clad.
View Article and Find Full Text PDFA new approach combining Raman spectrometry and laser induced breakdown spectrometry (LIBS) within a single laser event was suggested. A pulsed solid state Nd:YAG laser running in double pulse mode (two frequency-doubled sequential nanosecond laser pulses with dozens microseconds delay) was used to combine two spectrometry methods within a single instrument (Raman/LIBS spectrometer). First, a low-energy laser pulse (power density far below ablation threshold) was used for Raman measurements while a second powerful laser pulse created the plasma suitable for LIBS analysis.
View Article and Find Full Text PDFRaman signal enhancement by multiple scattering inside laser crater cones was observed for the first time, to the best of our knowledge. Laser crater enhanced Raman spectroscopy (LCERS) yielded a 14-fold increase in the Raman spectra bands due to efficient multiple scattering of laser irradiation within the laser crater walls. The same pulsed Nd:YAG laser (532 nm, 10 ns) was used for both laser crater formation and Raman scattering experiments by varying the output pulse energy.
View Article and Find Full Text PDFRemote water temperature measurements by Raman scattering is a perspective tool for in situ and/or real-time studies for inaccessible areas such as the Arctic region. State-of-the-art laser remote temperature detection techniques are based on temperature-dependent transformation of the Raman OH stretching vibration band. This study compared different approaches quantifying Raman OH-band spectra transformation with temperature: the two-color technique, deconvolution procedure, Raman difference spectroscopy, and centroid technique.
View Article and Find Full Text PDFAn efficient and simple and convenient technique for transparent samples thickness measurements by Raman spectroscopy is suggested. The elastic scattering can be effectively used for sample border indication if the refractive index changes more than 3%, while it fails to detect an ice-to-water border of floating ice. The alternative is to use Raman spectroscopy to detect the interface between different layers of transparent materials.
View Article and Find Full Text PDFA compact Raman LIDAR system with a spectrograph was used for express ice thickness measurements. The difference between the Raman spectra of ice and liquid water is employed to locate the ice-water interface while elastic scattering was used for air--ice surface detection. This approach yields an error of only 2 mm for an 80 mm thick ice sample, indicating that it is a promising express noncontact thickness measurements technique in field experiments.
View Article and Find Full Text PDFA compact Raman lidar system for remote sensing of sea and drifting ice was developed at the Wave Research Center at the Prokhorov General Physics Institute of the Russian Academy of Sciences. The developed system is based on a diode-pumped solid-state YVO(4):Nd laser combined with a compact spectrograph equipped with a gated detector. The system exhibits high sensitivity and can be used for mapping or depth profiling of different parameters within many oceanographic problems.
View Article and Find Full Text PDF