In this paper we investigate polyelectrolyte complexes of sodium alginate (Alg) and chitin nanocrystals (ChNC). Formation, stability and transport properties of sunflower oil-in-water emulsions stabilized by ChNC-Alg complex were studied using dynamic light scattering (DLS), laser Doppler electrophoresis, optical microscopy, potentiometric titration, rheology and simulated digestion. It has been established that during emulsions formation, the ChNC-Alg complex is rearranged at the interface and the formation of a two-layer coating of the droplet occurs.
View Article and Find Full Text PDFSH-containing polymers and nanoparticles are a significant direction in the creation of novel materials. The aim of this work is the synthesis of cellulose nanocrystals (CNC) with a surface modified by tosyl functions (CNC-Ts) and their further modification into SH-containing nanocrystals (CNC-SH). CNC-Ts were synthesized in an aqueous-organic emulsion from never-dried particles, while maintaining the size and supramolecular structure of CNC; the content of Ts-functions is up to 2.
View Article and Find Full Text PDFIn this work, we studied for the first time the formation of olive oil emulsions in water stabilized by plate-like nanocrystals with the supramolecular structure of cellulose II (pCNC). Effects of storage, pCNC concentration, and NaCl on the stability and properties of Pickering emulsions, including the creaming index, droplet size, zeta potential, acid-base surface properties, and rheology, were studied. A significant influence of the shape of nanoparticles (compared to the classical rod-like shape) on the stability parameters and rheological characteristics of emulsions is shown.
View Article and Find Full Text PDFVitamin D3 deficiency is a major public health problem worldwide, and standard cholecalciferol formulations provide poor absorbability of the vitamin. Several biphasic formulas have been proposed to overcome the disadvantages in which Pickering emulsions stand out in particular. This paper describes olive oil-in-water Pickering emulsions stabilized by pseudoboehmite (AlOOH), cellulose nanocrystals (CNC), and their heterocoagulates.
View Article and Find Full Text PDFPickering emulsions are of interest in medicament transport systems. The properties of emulsions are influenced by the type of oil and the surface structure of nanoparticles-stabilizers. The process of formation of o/w emulsions of olive oil stabilized by chitin nanocrystals was investigated, their stability under the influence of physical factors, rheological characteristics, acute toxicity after oral administration, stability under the conditions of a model of the gastrointestinal tract, and their potential for oral transport of vitamin D3 were analyzed.
View Article and Find Full Text PDFCell viability is the primary integrative parameter used for various purposes, particularly when fabricating tissue equivalents (, using bioprinting or scaffolding techniques), optimizing conditions to cultivate cells, testing chemicals, drugs, and biomaterials, Most of the conventional methods were originally designed for a monolayer (2D) culture; however, 2D approaches fail to adequately assess a tissue-engineered construct's viability and drug effects and recapitulate the host-pathogen interactions and infectivity. This study aims at revealing the influence of particular 3D cell systems' parameters such as the components' concentration, gel thickness, cell density, on the cell viability and applicability of standard assays. Here, we present an approach to achieving adequate and reproducible results on the cell viability in 3D collagen- and fibrin-based systems using the Live/Dead, AlamarBlue, and PicoGreen assays.
View Article and Find Full Text PDFInt J Biol Macromol
November 2021
In this study, electrospray deposition has been used as a method to prepare lignin submicron spherical particles. Regularities of electrospraying of lignin solutions in DMSO were revealed. The influence of voltage, distance between electrodes, feed rate, temperature and concentration of lignin solution on the morphology, size and polydispersity of the obtained particles was determined.
View Article and Find Full Text PDFIn this work, AlOOH-FeO powder nanocomposites for Cr(VI) adsorption were obtained for the first time using oppositely charged boehmite and citric acid modified magnetite sols. The process of heteroaggregation of oppositely charged AlOOH and FeO nanoparticles was also studied as one of the stages in the preparation of adsorption active material. Сomposition, surface area, porous structure, thermal and surface properties, adsorption efficiency, and regenerability of nanocomposites were investigated using a wide range of analytical methods.
View Article and Find Full Text PDFBoth cellulose nanocrystals and gold nanoparticles show immense potential for biological and chemical applications. Gold nanoparticles, which tend to aggregate, are hybridized with cellulose nanocrystals to form stable inorganic-organic hybrids in which nanocellulose acts as a green supporting material for the catalytically active gold nanoparticles. A green synthesis approach was taken, and hydrothermal treatment was used to reduce electrostatic repulsion between the gold nanoparticles and the cellulose nanocrystals to promote heteroaggregation instead of homoaggregation.
View Article and Find Full Text PDFThere exists a high demand for simple and affordable blood glucose monitoring methods. For this purpose, new generations of biosensors are being developed for possible in vivo or dermal use. We present (non)sulphated cellulose nanocrystal/magnetite thin films to act as dermal and oral glucose biosensors.
View Article and Find Full Text PDFThis paper presents sols of uncoated and citric acid-coated FeO nanoparticles obtained by a combination of coprecipitation and sonochemistry methods. A stable concentrated CA-FeO sol synthesized by a combination of coprecipitation with an inconvenient Fe/Fe ratio, modification with citric acid and US treatment was obtained for the first time. A comparative analysis of the composition and morphology of nanoparticles was performed.
View Article and Find Full Text PDFOne possible way of obtaining cellulose nanocrystals and aqueous sols with novel properties is based on modification of supramolecular structure of the polysaccharide. This modification involves rearrangements of hydrogen bonds and has an effect on polymer morphology, formation of surface reactive sites and interface interactions. Disc-like nanocrystals of cellulose II were prepared by solvolysis of regenerated cellulose in acetic acid/octanol medium in the presence of 0.
View Article and Find Full Text PDF