A series of 73 ligands and 73 of their Cu and Cu copper complexes with different geometries, oxidation states of the metal, and redox activities were synthesized and characterized. The aim of the study was to establish the structure-activity relationship within a series of analogues with different substituents at the N(3) position, which govern the redox potentials of the Cu/Cu redox couples, ROS generation ability, and intracellular accumulation. Possible cytotoxicity mechanisms, such as DNA damage, DNA intercalation, telomerase inhibition, and apoptosis induction, have been investigated.
View Article and Find Full Text PDFA novel approach to the synthesis of pH-sensitive prodrugs has been proposed: thiourea drug modification. Resulting prodrugs can release the cytotoxic agent and the biologically active 2-thiohydantoin in the acidic environment of tumor cells. The concept of acid-catalyzed cyclization of thioureas to 2-thiohydantoins has been proven using a FRET model.
View Article and Find Full Text PDFWe have synthesized and characterized a panel of new binuclear mixed valence Cu(I,II) complexes containing substituted 2-alkylthio-5-arylmethylene-4H-imidazolin-4-ones with unusual structure. These complexes are shown to be cytotoxic for various cell lines. We have found that these compounds did not intercalate DNA, inhibited number of polymerases (telomerase predominantly), accumulated in the cell nucleus, and caused DNA degradation.
View Article and Find Full Text PDF