Publications by authors named "Vasily Karandashev"

Due to very high mobility in the environment and penetration ability into living organisms, nanoparticles (NPs) of urban dust pose a potential threat to human health and urban ecosystems. Currently, data on the chemical composition of NPs of urban dust, their fate in the environment, and corresponding risks are rather limited. In the present work, NPs of deposited urban dust have been comprehensively studied for the first time; NPs isolated from 78 samples of dust collected in Moscow, the largest megacity in Europe, being taken as example.

View Article and Find Full Text PDF

Ageing processes of vehicle catalytic converters inevitably lead to the release of Pt and Pd into the environment, road dust being the main sink. Though Pt and Pd are contained in catalytic converters in nanoparticulate metallic form, under environmental conditions, they can be transformed into toxic dissolved species. In the present work, the distribution of Pt and Pd between dissolved, nanoparticulate, and microparticulate fractions of Moscow road dust is assessed.

View Article and Find Full Text PDF

Natural nanomaterials, which play a very important role in environmental processes, are so far poorly studied. Firstly, the separation of nanoparticles from the bulk sample is a challenge. Secondly, the absence of reference natural nanomaterials makes it impossible to compare the results obtained by different researchers and develop a unified methodology for the separation and characterization of natural nanomaterials.

View Article and Find Full Text PDF

Nanoparticles (NPs) in the environment have a potential risk for human health and the ecosystem due to their ubiquity, specific characteristics, and properties (extreme mobility in the environment, abilities to accumulate of toxic elements and penetrate into living organisms). There is still a gap in studies on the chemical composition of natural NPs. The main reason is the difficulty to recover NPs, which may represent only one-thousandth or less of the bulk environmental sample, for further dimensional and quantitative characterization.

View Article and Find Full Text PDF

A comprehensive approach has been developed to the assessment of composition and properties of atmospherically deposited dust in the area affected by a copper smelter. The approach is based on the analysis of initial dust samples, dynamic leaching of water soluble fractions in a rotating coiled column (RCC) followed by the determination of recovered elements and characterization of size, morphology and elemental composition of nano-, submicron, and micron par ticles of dust separated using field-flow fractionation in a RCC. Three separated size fractions of dust (<0.

View Article and Find Full Text PDF

Road-deposited sediments (RDS) present a sink for traffic-related pollutants including heavy metals (HMs). HMs associated with RDS particles enter the urban aquatic environment during rainfall events and have adverse effects for biota. RDS nanoscale particles (NSPs) require special consideration due to their specific properties, extremely high mobility in the environment, and ability to penetrate into living organisms.

View Article and Find Full Text PDF

At present, there is concern about engineered nanoparticles in the environment, whereas natural nanoparticles (NPs) and their impact are often neglected. In our paper, we demonstrate the important role of nanoparticles of volcanic ash in transport of toxic elements on a global scale. A single volcanic eruption can eject millions of tons of ash.

View Article and Find Full Text PDF

Determination of the DNA-binding reactivity and affinity is an important part of a successful program for the selection of metallodrug candidates. For such assaying, a range of complementary analytical techniques was proposed and tested here using one of few anticancer metal-based drugs that are currently in clinical trials, indazolium trans-[tetrachloridobis(1H-indazole)ruthenate(III), and a DNA oligonucleotide. A high reactivity of the Ru drug was confirmed in affinity capillary electrophoresis (CE) mode, where adduct formation takes place in situ (i.

View Article and Find Full Text PDF

A comprehensive approach has been developed to the assessment of composition and properties of atmospherically deposited dust in the area affected by a copper smelter. The approach is based on the analysis of initial dust samples, dynamic leaching of water soluble fractions in a rotating coiled column (RCC) followed by the determination of recovered elements and characterization of size, morphology and elemental composition of nano-, submicron, and micron particles of dust separated using field-flow fractionation in a RCC. Three separated size fractions of dust (<0.

View Article and Find Full Text PDF

Continuous-flow (dynamic) leaching in a rotating coiled column has been applied to studies on the mobility of Zn, Cd, Cu, Pb, Ni, Sb, As, S, and other potentially toxic elements in atmospherically deposited dust samples collected near a large copper smelter (Chelyabinsk region, Russia). Water and simulated "acid rain" (pH 4) were used as eluents. The technique enables not only the fast and efficient leaching of elements but as well time-resolved studies on the mobilization of heavy metals, sulphur, and arsenic in environmentally relevant forms to be made.

View Article and Find Full Text PDF

For the first time, nano- and submicron particles of street dust have been separated, weighted, and analyzed. A novel technique, sedimentation field-flow fractionation in a rotating coiled column, was applied to the fractionation of dust samples with water being used as a carrier fluid. The size and morphology of particles in the separated fractions were characterized by electronic microscopy before digestion and the determination of the concentration of elements by ICP-AES and ICP-MS.

View Article and Find Full Text PDF