Publications by authors named "Vasily A Lebedev"

Solution-based synthesis of mixed ionic and electronic conductors (MIECs) has enabled the development of novel inorganic materials with implications for a wide range of energy storage applications. However, many technologically relevant MIECs contain toxic elements (Pb) or are prepared by using traditional high-temperature solid-state synthesis. Here, we provide a simple, low-temperature and size-tunable (50-90 nm) colloidal hot injection approach for the synthesis of NaSbS based MIECs using widely available and non-toxic precursors.

View Article and Find Full Text PDF

In this study, we demonstrate the sintering of metastable ε-FeO nanoparticles into nanoceramics containing 98 wt% of the epsilon iron oxide phase and with a specific density of 60%. At room temperature, the ceramics retain a giant coercivity of 20 kOe and a sub-terahertz absorption at 190 GHz inherent in the initial nanoparticles. The sintering leads to an increase in the frequencies of the natural ferromagnetic resonance at 200-300 K and larger coercivities at temperatures below 150 K.

View Article and Find Full Text PDF

Herein, we demonstrate the synthesis of sandwiched composite nanomagnets, which consist of hard magnetic Cr-substituted hexaferrite cores and magnetite outer layers. The hexaferrite plate-like nanoparticles, with average dimensions of 36.3 nm × 5.

View Article and Find Full Text PDF

The solution-based colloidal synthesis of multinary semiconductor compositions has allowed the design of new inorganic materials impacting a large variety of applications. Yet there are certain compositions that have remained elusive-particularly quaternary structures of transition metal-based (e.g.

View Article and Find Full Text PDF

Correction for 'High-coercivity hexaferrite ceramics featuring sub-terahertz ferromagnetic resonance' by Evgeny A. Gorbachev , , 2022, , 1264-1272, DOI: https://doi.org/10.

View Article and Find Full Text PDF

Direct colloidal synthesis of multinary metal chalcogenide nanocrystals typically develops dynamically from the binary metal chalcogenide nanocrystals with the subsequent incorporation of additional metal cations from solution during the growth process. Metal seeding of binary and multinary chalcogenides is also established, although the seed is solely a catalyst for nanocrystal nucleation and the metal from the seed has never been exploited as active alloying nuclei. Here we form colloidal Cu-Bi-Zn-S nanorods (NRs) from Bi-seeded CuS heterostructures.

View Article and Find Full Text PDF

Herein, we demonstrate for the first time compact ferrite ceramics with giant coercivity. The materials are manufactured sintering single-domain SrCaFeAlO particles synthesized by a citrate-nitrate auto-combustion method. The obtained ceramics show coercivities up to 22.

View Article and Find Full Text PDF

Due to their unique physical and chemical properties, monodisperse titanium oxide microspheres can be used in dye-sensitized solar cells, as cosmetic pigments, and for other applications. However, the synthesis of microspheres with narrow size distribution, desired phase composition, and porosity is still a challenge. In this work, spherical titania particles with controllable size, crystallinity, and pore size were obtained by Ti(OBu) hydrolysis in ethanol.

View Article and Find Full Text PDF

Iron deficiency is a frequent problem for many crops, particularly in calcareous soils and iron humates are commonly applied in the Mediterranean basin in spite of their lesser efficiency than iron synthetic chelates. Development and application of new fertilizers using nanotechnology are one of the potentially effective options of enhancing the iron humates, according to the sustainable agriculture. Particle size, pH, and kinetics constrain the iron humate efficiency.

View Article and Find Full Text PDF

Composites of WS nanotubes (NT-WS ) and gold nanoparticles (AuNPs) were prepared using aqueous HAuCl solutions and subjected to surface analysis. The obtained materials were jointly characterized by X-ray photoelectron (XPS), Raman scattering (RSS), and ultraviolet photoelectron (UPS) spectroscopies. Optical extinction spectroscopy and electron energy loss spectroscopy in the scanning transmission electron microscopy regime (STEM-EELS) were also employed to study plasmon features of the nanocomposite.

View Article and Find Full Text PDF
Article Synopsis
  • Replacing strontium and iron with calcium and aluminum in strontium hexaferrite boosts coercivity to a new high of 21.3 kOe.
  • The increased coercivity is linked to changes in the crystal structure.
  • This structural distortion enhances the magnetocrystalline anisotropy, contributing to better magnetic performance.
View Article and Find Full Text PDF

Availability of Fe in soil to plants is closely related to the presence of humic substances (HS). Still, the systematic data on applicability of iron-based nanomaterials stabilized with HS as a source for plant nutrition are missing. The goal of our study was to establish a connection between properties of iron-based materials stabilized by HS and their bioavailability to plants.

View Article and Find Full Text PDF