Dokl Biochem Biophys
January 2017
Regenerative properties of fibroin implant vitalized with allogeneic bone marrow cells were assessed. The study was performed using the experimental model of rat jejunum wall damage. Three weeks after surgery, we observed recovery of all layers of the jejunum wall at the site of injury and complete degradation of the implant material.
View Article and Find Full Text PDFOne of the major tasks of tissue engineering is to produce tissue grafts for the replacement or regeneration of damaged tissue, and natural and recombinant silk-based polymer scaffolds are promising candidates for such grafts. Here, we compared two porous scaffolds made from different silk proteins, fibroin of Bombyx mori and a recombinant analog of Nephila clavipes spidroin 1 known as rS1/9, and their biocompatibility and degradation behavior in vitro and in vivo. The vascularization and intergrowth of the connective tissue, which was penetrated with nerve fibers, at 8 weeks after subcutaneous implantation in Balb/c mice was more profound using the rS1/9 scaffolds.
View Article and Find Full Text PDFThe goal of this study was to generate porous scaffolds from the genetically engineered protein, an analogue of Nephila clavipes spidroin 1 (rS1/9) and to assess the properties of new rS1/9 scaffolds essential for bioengineering. The salt leaching technique was used to make the rS1/9 scaffolds of interconnected macroporous structure with spontaneously formed micropores. The tensile strength of scaffolds was 18 ± 5 N/cm(2).
View Article and Find Full Text PDF