Background: A search for efficient graft rejection modulation techniques for the promotion of durable engraftment remains to be a matter of close study all over the world. Despite the variety of immunosuppressive drugs, the schemes currently used show a lack of selectivity and have a number of side effects. Here we investigated an approach for the induction of antigen-specific tolerance in a human "stimulator-responder" model , using dendritic cells (DCs) transfected with designed DNA constructs encoding the stimulator's major histocompatibility complex (MHC) epitopes.
View Article and Find Full Text PDFBackground: Nonspecific immunosuppressive therapy for graft rejection and graft-versus-host disease (GVHD) is often accompanied by severe side effects such as opportunistic infections and cancers. Several approaches have been developed to suppress transplantation reactions using tolerogenic cells, including induction of FoxP3 Tregs with antigen-loaded dendritic cells (DCs) and induction of CD4IL-10 cells with interleukin IL-10-producing DCs. Here, we assessed the effectiveness of both approaches in the suppression of graft rejection and GVHD.
View Article and Find Full Text PDFIntroduction: Dendritic cells (DCs) control immune responses by modulating T and B cells towards effector or tolerogenic responses. In this study, we evaluated the effects of different immunosuppressive molecules on the phenotypic and functional characteristics of primary dendritic cells from C57BL/6 and CBA mice.
Methods: DCs were derived from bone marrow cells in the presence of rmGM-CSF and rmIL-4.