Publications by authors named "Vasiliy O Pelenovich"

The optical and magneto-optical characteristics of KTb3F10 crystals in the transition region of 5D4 → 7F6 4f8 configurations of the Tb3+ ion at temperatures of 90 and 300 K were studied. The schemes of the optical transitions in the KTb3F10 crystals were constructed, and the energies of most of the Stark sublevels of the ground 7F6 and excited 5D4 multiplets of the Tb3+ ion split by the C4v symmetry crystal environment were determined. The presence of three- and two-doublet states in the energy spectra of the Tb3+ion multiplets 7F6 and 5D4, respectively, was established, which is in good agreement with theoretical predictions.

View Article and Find Full Text PDF

A series of novel Fe-Cd co-doped ZnO nanoparticle based photocatalysts are successfully synthesized by sol-gel route and characterized using scanning electron microscopy (SEM), energy dispersive X-ray emission (EDX), transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-Vis spectroscopy, X-ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller (BET) techniques. The photocatalytic activity of ZnO nanoparticles doped with various atomic weight fraction of Fe and Cd has been investigated under visible light irradiation using the Methylene Blue and Rhodamine B dye in aqueous solution. The FeCd (2%):ZnO (ZFC-1) exhibit the highest photocatalytic activity in terms of rate constant as K = 0.

View Article and Find Full Text PDF

Transition metal dichalcogenide materials have been considered as promising anode materials for rechargeable sodium-ion batteries because of their high specific capacity and low cost. Here, we demonstrate an iron sulfide FeS as a new anode material for a rechargeable sodium-ion battery. The involved conversion mechanism has been proved when the as-prepared FeS was used as the host material for sodium storage.

View Article and Find Full Text PDF

A MoS2 nanosphere memristor with lateral gold electrodes was found to show photoresistive switching. The new device can be controlled by the polarization of nanospheres, which causes resistance switching in an electric field in the dark or under white light illumination. The polarization charge allows to change the switching voltage of the photomemristor, providing its multi-level operation.

View Article and Find Full Text PDF