Despite prevention strategies, cervical cancer remains a significant public health issue. Human papillomavirus plays a critical role in its development, and early detection is vital to improve patient outcomes. The incidence of cervical cancer is projected to rise, necessitating better diagnostic tools.
View Article and Find Full Text PDFThe isolation of small extracellular vesicles (sEVs), including those secreted by pathological cells, with high efficiency and purity is highly demanded for research studies and practical applications. Conventional sEV isolation methods suffer from low yield, presence of contaminants, long-term operation and high costs. Bead-assisted platforms are considered to be effective for trapping sEVs with high recovery yield and sufficient purity for further molecular profiling.
View Article and Find Full Text PDFHollow-core microstructured optical waveguides (HC-MOW) have recently emerged in sensing technologies, including the gas and liquid detection for industrial as well as clinical applications. Antiresonant HC-MOW provide capabilities for applications in refractive index (RI) sensing, while the long optical path for analyte-light interaction in HC-MOW leads to increased sensitivity of sensor based on Raman scattering signal measurements. In this study, we developed a two-in-one sensor device using HC-MOW for RI and Raman scattering detection.
View Article and Find Full Text PDFThe involvement of extracellular vesicles (EVs) in cellular communication with multifactorial and multifaceted biological activity has generated significant interest, highlighting their potential diagnostic and therapeutic applications. EVs are found in nearly all biological fluids creating a broad spectrum of where potential disease markers can be found for liquid biopsy development and what subtypes can be used for treatment of diseases. Complexity of biological fluids has generated a variety of different approaches for EV isolation and identification that may in one way or another be most optimal for research studies or clinical use.
View Article and Find Full Text PDFTremendous interest in research of small extracellular vesicles (sEVs) is driven by the participation of vesicles in a number of biological processes in the human body. Being released by almost all cells of the body, sEVs present in complex bodily fluids form the so-called intercellular communication network. The isolation and profiling of individual fractions of sEVs secreted by pathological cells are significant in revealing their physiological functions and clinical importance.
View Article and Find Full Text PDFSpectrometers are widely used tools in chemical and biological sensing, material analysis, and light source characterization. However, an important characteristic of traditional spectrometers for biomedical applications is stable operation. It can be achieved due to high fabrication control during the development and stabilization of temperature and polarization of optical radiation during measurements.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2022
Small extracellular vesicles (sEVs) have attracted tremendous interest in recent years due to their exceptional properties for therapeutic and diagnostic applications. Although much research was focused on the quantity and content of sEVs, less efforts have been put into discovering the interaction between sEVs and cells. Here we engineered multicompartment particles, termed vesicosomes, by deposition of sEVs derived from MCF7, CHO cells and human plasma onto the surface of polyelectrolyte (PE)-coated silica (SiO) microparticles.
View Article and Find Full Text PDFAn elaboration of the photonic based sensors is the most promising direction in modern analytical chemistry from the point of view of real clinical applications. The highest sensitivity is demonstrated by sensors based on photonic integrated circuits (PICs). This type of sensor has been recently successfully combined with microfluidics, which decreased the analyte volume for analysis down to microliter units.
View Article and Find Full Text PDFWe developed a novel asymmetric depth filtration (DF) approach to isolate extracellular vesicles (EVs) from biological fluids that outperforms ultracentrifugation and size-exclusion chromatography in purity and yield of isolated EVs. By these metrics, a single-step DF matches or exceeds the performance of multistep protocols with dedicated purification procedures in the isolation of plasma EVs. We demonstrate the selective transit and capture of biological nanoparticles in asymmetric pores by size and elasticity, low surface binding to the filtration medium, and the ability to cleanse EVs held by the filter before their recovery with the reversed flow all contribute to the achieved purity and yield of preparations.
View Article and Find Full Text PDFMicrobubbles are routinely used ultrasound contrast agents in the clinic. While a soft protein shell is commercially preferable for imaging purposes, a rigid polymer shell demonstrates prolonged agent stability. Hence, combining polymers and proteins in one shell composition can advance microbubble properties.
View Article and Find Full Text PDFExtracellular vesicle (EV) quantification is a procedure through which the biomedical potential of EVs can be used and their biological function can be understood. The number of EVs isolated from cell culture media depends on the cell status and is especially important in studies on cell-to-cell signaling, disease modeling, drug development, etc. Currently, the methods that can be used to quantify isolated EVs are sparse, and each have limitations.
View Article and Find Full Text PDFWe present a targeted drug delivery system for therapy and diagnostics that is based on a combination of contrasting, cytotoxic, and cancer-cell-targeting properties of multifunctional carriers. The system uses multilayered polymer microcapsules loaded with magnetite and doxorubicin. Loading of magnetite nanoparticles into the polymer shell by freezing-induced loading (FIL) allowed the loading efficiency to be increased 5-fold, compared with the widely used layer-by-layer (LBL) assembly.
View Article and Find Full Text PDFToday, a lab-on-a-chip is one of the most promising ways to create sensor devices for gas and liquid analysis for environmental monitoring, early diagnosis, and treatment effectiveness assessment. On the one hand, this requires a large number of measurements and, on the other hand, involves minimum consumption of the test analytes. Combination of highly sensitive photonic integrated circuits (PICs) with microfluidic channels (MFCs) is necessary to solve this problem.
View Article and Find Full Text PDFThe concentration of extracellular vesicles (EVs) is an essential attribute of biofluids and EV preparations. EV concentration in body fluids was correlated with health status. The abundance of EV secreted by cultured cells into growth medium is vital in signaling studies, tissue and disease models, and biomanufacturing of acellular therapeutic secretome.
View Article and Find Full Text PDFLiquid/surfactant/gas interfaces are promising objects for nanoengineered multimodal contrasts, which can be used for biomedical imaging in preclinical and clinical applications. Microbubbles with the gaseous core and shell made of lipids/proteins have already acted as ultrasound (US) contrast agents for angiography. In the present work, microbubbles with a shell composed of Span 60 and Tween 80 surfactants functionalized with fluorescein isothiocyanate and gold nanorods to achieve a multimodal combination of US, fluorescence, and optoacoustic imaging are described.
View Article and Find Full Text PDFMicrobubbles have already reached clinical practice as ultrasound contrast agents for angiography. However, modification of the bubbles' shell is needed to produce probes for ultrasound and multimodal (fluorescence/photoacoustic) imaging methods in combination with theranostics (diagnostics and therapeutics). In the present work, hybrid structures based on microbubbles with an air core and a shell composed of bovine serum albumin, albumin-coated gold nanoparticles, and clinically available photodynamic dyes (zinc phthalocyanine, indocyanine green) were shown to achieve multimodal imaging for potential applications in photodynamic therapy.
View Article and Find Full Text PDFThere has been growing interest in recent years in developing multifunctional materials for studying the structure interface in biological systems. In this regard, the multimodal systems, which possess activity in the near-infrared (NIR) region, become even more critical for the possibility of improving examined biotissue depth and, eventually, data analysis. Herein, we engineered bi-modal contrast agents by integrating carbon nanotubes (CNT) and gold nanoparticles (AuNP) around silica microspheres using the Layer-by-Layer self-assembly method.
View Article and Find Full Text PDFDevelopment of multimodal systems for therapy and diagnosis of neoplastic diseases is an unmet need in oncology. The possibility of simultaneous diagnostics, monitoring, and therapy of various diseases allows expanding the applicability of modern systems for drug delivery. We have developed hybrid particles based on biocompatible polymers containing magnetic nanoparticles (MNPs), photoacoustic (MNPs), fluorescent (Cy5 or Cy7 dyes), and therapeutic components (doxorubicin).
View Article and Find Full Text PDFExosomes and other extracellular vesicles (EVs) are molecular complexes consisting of a lipid membrane vesicle, its surface decoration by membrane proteins and other molecules, and diverse luminal content inherited from a parent cell, which includes RNAs, proteins, and DNAs. The characterization of the hydrodynamic sizes of EVs, which depends on the size of the vesicle and its coronal layer formed by surface decorations, has become routine. For exosomes, the smallest of EVs, the relative difference between the hydrodynamic and vesicles sizes is significant.
View Article and Find Full Text PDFCellProfiler has enabled the scientific research community to create flexible, modular image analysis pipelines since its release in 2005. Here, we describe CellProfiler 3.0, a new version of the software supporting both whole-volume and plane-wise analysis of three-dimensional (3D) image stacks, increasingly common in biomedical research.
View Article and Find Full Text PDFExosomes are membrane nanovesicles implicated in cell-to-cell signaling in which they transfer their molecular cargo from the parent to the recipient cells. This role essentially depends on the exosomes' small size, which is the prerequisite for their rapid migration through the crowded extracellular matrix and into and out of circulation. Here we report much lower exosome mobility than expected from the size of their vesicles, implicate membrane proteins in a substantially impeded rate of migration, and suggest an approach to quantifying the impact.
View Article and Find Full Text PDFA novel approach that uses noninvasive ultrasound to measure the temperature distribution in solid materials is described and validated in high-temperature laboratory experiments. The approach utilizes an ultrasound propagation path with naturally occurring or purposefully introduced echogenic features that partially redirect the energy of an ultrasound excitation pulse back to the transducer, resulting in a train of echoes. Their time of flight depends on the velocity of ultrasound propagation, which changes with temperature distribution in different segments of the propagation path.
View Article and Find Full Text PDFExosomes are stable nanovesicles secreted by cells into the circulation. Their reported sizes differ substantially, which likely reflects the difference in the isolation techniques used, the cells that secreted them, and the methods used in their characterization. We analyzed the influence of the last factor on the measured sizes and shapes of hydrated and desiccated exosomes isolated from the serum of a pancreatic cancer patient and a healthy control.
View Article and Find Full Text PDFFluorocarbons are highly hydrophobic, biocompatible compounds with a variety of medical applications. Despite significant interest, the study of interfacial properties of fluorocarbons in aqueous systems has received limited attention. In this study, we investigate the influence of perfluoropentane and perfluorohexane vapors on the surface tension of water at room temperature.
View Article and Find Full Text PDF