Publications by authors named "Vasilis Tseliou"

Photoenzymes are light-powered biocatalysts that typically rely on the excitation of cofactors or unnatural amino acids for their catalytic activities. A notable natural example is the fatty acid photodecarboxylase, which uses light energy to convert aliphatic carboxylic acids to achiral hydrocarbons. Here we report a method for the design of a non-natural photodecarboxylase based on the excitation of enzyme-bound catalytic intermediates, rather than reliance on cofactor excitation.

View Article and Find Full Text PDF

Herein, we show how the merge of biocatalysis with flow chemistry aided by 3D-printing technologies can facilitate organic synthesis. This concept was exemplified for the reductive amination of benzaldehyde catalysed by co-immobilised amine dehydrogenase and formate dehydrogenase in a continuous flow micro-reactor. For this purpose, we investigated enzyme co-immobilisation by covalent binding, or ion-affinity binding, or entrapment.

View Article and Find Full Text PDF

Asymmetric catalytic cascade processes offer direct access to complex chiral molecules from simple substrates and in a single step. In biocatalysis, cascades are generally designed by combining multiple enzymes, each catalyzing individual steps of a sequence. Herein, we report a different strategy for biocascades based on a single multifunctional enzyme that can promote multiple stereoselective steps of a domino process by mastering distinct catalytic mechanisms of substrate activation in a sequential way.

View Article and Find Full Text PDF

The l-lysine-ϵ-dehydrogenase (LysEDH) from Geobacillus stearothermophilus naturally catalyzes the oxidative deamination of the ϵ-amino group of l-lysine. We previously engineered this enzyme to create amine dehydrogenase (AmDH) variants that possess a new hydrophobic cavity in their active site such that aromatic ketones can bind and be converted into α-chiral amines with excellent enantioselectivity. We also recently observed that LysEDH was capable of reducing aromatic aldehydes into primary alcohols.

View Article and Find Full Text PDF

A NADH-dependent engineered amine dehydrogenase from (LE-AmDH-v1) was applied together with a NADH-oxidase from (NOx) for the kinetic resolution of pharmaceutically relevant racemic α-chiral primary amines. The reaction conditions (e. g.

View Article and Find Full Text PDF

Amine dehydrogenases (AmDHs) catalyse the conversion of ketones into enantiomerically pure amines at the sole expense of ammonia and hydride source. Guided by structural information from computational models, we create AmDHs that can convert pharmaceutically relevant aromatic ketones with conversions up to quantitative and perfect chemical and optical purities. These AmDHs are created from an unconventional enzyme scaffold that apparently does not operate any asymmetric transformation in its natural reaction.

View Article and Find Full Text PDF

Biocatalytic asymmetric amination of ketones, by using amine dehydrogenases (AmDHs) or transaminases, is an efficient method for the synthesis of α-chiral primary amines. A major challenge is to extend amination to the synthesis of secondary and tertiary amines. Herein, for the first time, it is shown that AmDHs are capable of accepting other amine donors, thus giving access to enantioenriched secondary amines with conversions up to 43 %.

View Article and Find Full Text PDF

Herein, we present a study on the oxidation of aldehydes to carboxylic acids using three recombinant aldehyde dehydrogenases (ALDHs). The ALDHs were used in purified form with a nicotinamide oxidase (NOx), which recycles the catalytic NAD at the expense of dioxygen (air at atmospheric pressure). The reaction was studied also with lyophilised whole cell as well as resting cell biocatalysts for more convenient practical application.

View Article and Find Full Text PDF

Α reduction of pyrethroid efficacy has been recently recorded in Bactrocera oleae, the most destructive insect of olives. The resistance levels of field populations collected from Crete-Greece scaled up to 22-folds, compared to reference laboratory strains. Sequence analysis of the IIS4-IIS6 region of para sodium channel gene in a large number of resistant flies indicated that resistance may not be associated with target site mutations, in line with previous studies in other Tephritidae species.

View Article and Find Full Text PDF

The two-spotted spider mite Tetranychus urticae is one of the most important agricultural pests world-wide. It is extremely polyphagous and develops resistance to acaricides. The overexpression of several glutathione S-transferases (GSTs) has been associated with insecticide resistance.

View Article and Find Full Text PDF