IEEE Trans Neural Netw Learn Syst
June 2024
Calculation of the time-varying (TV) matrix generalized inverse has grown into an essential tool in many fields, such as computer science, physics, engineering, and mathematics, in order to tackle TV challenges. This work investigates the challenge of finding a TV extension of a subclass of inner inverses on real matrices, known as generalized-outer (G-outer) inverses. More precisely, our goal is to construct TV G-outer inverses (TV-GOIs) by utilizing the zeroing neural network (ZNN) process, which is presently thought to be a state-of-the-art solution to tackling TV matrix challenges.
View Article and Find Full Text PDFThe problem of solving linear equations is considered as one of the fundamental problems commonly encountered in science and engineering. In this article, the complex-valued time-varying linear matrix equation (CVTV-LME) problem is investigated. Then, by employing a complex-valued, time-varying QR (CVTVQR) decomposition, the zeroing neural network (ZNN) method, equivalent transformations, Kronecker product, and vectorization techniques, we propose and study a CVTVQR decomposition-based linear matrix equation (CVTVQR-LME) model.
View Article and Find Full Text PDF