Genome editing is currently widely used in biomedical research; however, the use of this method in the clinic is still limited because of its low efficiency and possible side effects. Moreover, the correction of mutations that cause diseases in humans seems to be extremely important and promising. Numerous attempts to improve the efficiency of homology-directed repair-mediated correction of mutations in mammalian cells have focused on influencing the cell cycle.
View Article and Find Full Text PDFSchizophrenia is associated with low-grade systemic inflammation. Circulating cell-free DNA (c-cfDNA) belongs to the DAMP class. The major research question was: can the c-cfDNA of schizophrenic patients (sz-cfDNA) stimulate the DNA sensor genes, which control the innate immunity? We investigated the in vitro response of ten human skin fibroblast (HSF) lines to five DNA probes containing different amounts of a GC-rich marker (the ribosomal repeat) and a DNA oxidation marker (8-oxodG) including sz-cfDNA and healthy control c-cfDNA (hc-cfDNA) probes.
View Article and Find Full Text PDFInductors of myogenic stem cell differentiation attract attention, as they can be used to treat myodystrophies and post-traumatic injuries. Functionalization of fullerenes makes it possible to obtain water-soluble derivatives with targeted biochemical activity. This study examined the effects of the phosphonate C fullerene derivatives on the expression of myogenic transcription factors and myogenic differentiation of human mesenchymal stem cells (MSCs).
View Article and Find Full Text PDFBackground: Oxidized human DNA or plasmid DNAs containing human ribosomal genes can easily penetrate into the breast cancer cells MCF7 and stimulate the adaptive response induction. Plasmid DNA containing a CMV promoter, gene , and the insertion of the human ribosomal genes can be expressed. A hypothesis is proposed: these features of the ribosomal DNA are due to the presence of dGn motifs that are prone to oxidize.
View Article and Find Full Text PDFIn pathology or under damaging conditions, the properties of cell-free DNA (cfDNA) change. An example of such change is GC enrichment, which drastically alters the biological properties of cfDNA. GC-rich cfDNA is a factor of stress signaling, whereas genomic cfDNA is biologically inactive.
View Article and Find Full Text PDFWe report an "inversed" Arbuzov reaction of the fullerene derivatives CArCl with trialkyl phosphites P(OR) producing alkylated fullerene derivatives CArR (R = Me, Et, iPr, nBu) with almost quantitative yields. This reaction provides a convenient synthetic route for the preparation of a large variety of functionalized fullerene derivatives with tailored properties, e.g.
View Article and Find Full Text PDFCell-free DNA (cfDNA) is a circulating DNA of nuclear and mitochondrial origin mainly derived from dying cells. Recent studies have shown that cfDNA is a stress signaling DAMP (damage-associated molecular pattern) molecule. We report here that the expression profiles of cfDNA-induced factors NRF2 and NF-B are distinct depending on the target cell's type and the GC-content and oxidation rate of the cfDNA.
View Article and Find Full Text PDFAntibiotic chloramphenicol (CHL) binds with a moderate affinity at the peptidyl transferase center of the bacterial ribosome and inhibits peptide bond formation. As an approach for modifying and potentially improving properties of this inhibitor, we explored ribosome binding and inhibitory activity of a number of amino acid analogs of CHL. The L-histidyl analog binds to the ribosome with the affinity exceeding that of CHL by 10 fold.
View Article and Find Full Text PDFIt has been established that cell-free DNA circulating in the bloodstream affects cells. The characteristics of cfDNA depend on the physiological state of the organism. As we showed previously, diseases can cause either GC-enrichment of the cell-free DNA pool or its oxidation.
View Article and Find Full Text PDF