Carbons form critical components in biogas purification and energy storage systems and are used to modify polymer matrices. The environmental impact of producing carbons has driven research interest in biomass-derived carbons, although these have yield, processing, and resource competition limitations. Naturally formed fungal filaments are investigated, which are abundantly available as food- and biotechnology-industry by-products and wastes as cost-effective and sustainable templates for carbon networks.
View Article and Find Full Text PDFFood preservation is an essential application for polymers, particularly in packaging. Complex multilayer films, such as those used for modified atmosphere packaging (MAP), extend the shelf life of sensitive foods. These mostly contain various polymers to achieve the necessary combination of mechanic, optic, and barrier properties that limit their recyclability.
View Article and Find Full Text PDFThe most widely used commodity polymers in the rigid packaging industry are polypropylene (PP) and high-density polyethylene (HDPE). For example, blow molding grade of HDPE as a bottle and injection molding grade of PP as a cap are often used to produce detergent bottles. Therefore, the recycled HDPE bottles from post-consumer waste include PP as a contaminant originated from PP bottle caps.
View Article and Find Full Text PDFPlastic recycling strikes a balance between functional, mass producible products and environmental sustainability and is pegged by governments for rapid expansion. However, ambitious targets on recycled material adoption across new markets are at odds with the often heterogenous properties of contaminated regranulates. This study investigated polypropylene (PP) contamination in post-consumer low-density polyethylene (PE-LD) and mixed polyolefin (PO) regranulates.
View Article and Find Full Text PDFBlends of two long-chain branched polypropylenes (LCB-PP) and five linear polypropylenes (L-PP) were prepared in a single screw extruder at 240 °C. The two LCB-PPs were self-created via reactive extrusion at 180 °C by using dimyristyl peroxydicarbonate (PODIC C126) and dilauroyl peroxide (LP) as peroxides. For blending two virgin and three recycled PPs like coffee caps, yoghurt cups and buckets with different melt flow rate (MFR) values were used.
View Article and Find Full Text PDFPolypropylene (PP) and Polyethylene (PE) are widely used commodity plastics in packaging industry such as detergent bottles. To produce plastic detergent bottles, very often extrusion blown molded PE-HD as a body and injection molded PP as a screw cap are used. Separation of individual polymer type is difficult due to the similar density.
View Article and Find Full Text PDFThe influence of reactive processing, non reactive and reactive copolymers on immiscible polypropylene (PP)-polystyrene (PS) blends with varying PS concentrations (10 wt.% and 25 wt.%) was evaluated by mechanical (tensile and tensile impact), rheological (melt flow rate, extensional and dynamic rheology) and morphological (scanning electron microscopy) analysis.
View Article and Find Full Text PDFBackground: Implants made of ultra high molecular weight polyethylene (UHMWPE) has been used for almost 60 years in hip joint arthroplasty as articulating surface. UHMWPE implants have evolved over time from conventional to cross-linked implants. Chemical, morphologic, and micromechanical characteristics play important roles in overall in vivo performance.
View Article and Find Full Text PDFLong-chain branching (LCB) is known as a suitable method to increase the melt strength behavior of linear polypropylene (PP), which is a fundamental weakness of this material. This enables the modification of various properties of PP, which can then be used-in the case of PP recyclates-as a practical "upcycling" method. In this study, the effect of five different peroxides and their effectiveness in building LCB as well as the obtained mechanical properties were studied.
View Article and Find Full Text PDFLong-chain branching (LCB) with peroxydicarbonates (PODIC) is known as a suitable post-reactor process to introduce strain-hardening behaviour and an increase of melt strength to a linear polypropylene (PP). This opens up new possibilities for processing and therefore application. Especially in the case of adding value to PP post-consumer waste, LCB is a promising approach.
View Article and Find Full Text PDFLong chain branching (LCB) was used the first time as an innovative tool for value adding to PP from household post-consumer waste. Due to the highly improved melt properties, the possible application profile is extended and not only a "re-cycling" process, even a real "up-cycling" is presented. The used PP was collected from commingled household polyolefin waste, which contained different types of PP and macromolecular impurities such as 10% of polyethylene with high density (PE-HD).
View Article and Find Full Text PDFUltra-high molecular weight polyethylene (PE-UHMW) acetabular liners have a limited lifespan in a patient's body. There are many factors affecting the performance of the implant and furthermore the properties of the polymeric material are changing after implantation. In this work material changes according to structure and morphology and their implication on mechanical properties are in focus.
View Article and Find Full Text PDFUltrahigh molecular weight polyethylene (PE-UHMW), a material with high biocompatibility and excellent mechanical properties, is among the most commonly used materials for acetabular cup replacement in artificial joint systems. It is assumed that the interaction with synovial fluid in the biocompartment leads to significant changes relevant to material failure. In addition to hyaluronic acid, lipids are particularly relevant for lubrication in an articulating process.
View Article and Find Full Text PDFLoading parameters (frequency, amplitude ratio and waveform) are varied to determine their influence on fatigue crack growth in rubber. Up to three different rubber blends are investigated: one actual engineering material and two model materials. Fatigue crack growth curves and strain distributions of pure shear and faint waist pure shear samples are compared for a model material.
View Article and Find Full Text PDFTo develop a matched sealing material for socket rehabilitation of grey cast iron pipes, an epoxy resin is modified by the addition of different components to improve the flexibility. Three different modifications are made by adding ethylene-propylene diene monomer (EPDM) rubber powder, reactive liquid polymer (ATBN) and epoxidized modifier. In this paper the effect of the modification method as well as the influence of absorption of water on the mechanical and physical properties are analyzed in terms of: tensile strength, modulus of elasticity, adhesion performance, pressure resistance, glass transition temperature and water content.
View Article and Find Full Text PDF