The timing of flowering in plants is modulated by both carbon (C) and nitrogen (N) signaling pathways. In a previous study, we established a pivotal role of the sucrose-signaling trehalose 6-phosphate pathway in regulating flowering under N-limited short-day conditions. In this work, we show that both wild-type Arabidopsis (Arabidopsis thaliana) plants grown under N-limited conditions and knock-down plants of TREHALOSE PHOSPHATE SYNTHASE 1 induce FLOWERING LOCUS C (FLC) expression, a well-known floral repressor associated with vernalization.
View Article and Find Full Text PDFTranscription of antisense long noncoding RNAs (lncRNAs) occurs pervasively across eukaryotic genomes. Only a few antisense lncRNAs have been characterized and shown to control biological processes, albeit with idiosyncratic regulatory mechanisms. Thus, we largely lack knowledge about the general role of antisense transcription in eukaryotic organisms.
View Article and Find Full Text PDFNon-coding transcription is present in all eukaryotic genomes, but we lack fundamental knowledge about its importance for an organism's ability to develop properly. In plants, emerging evidence highlights the essential biological role of non-coding transcription in the regulation of coding transcription. However, we have few molecular insights into this regulation.
View Article and Find Full Text PDFSensing carbohydrate availability is essential for plants to coordinate their growth and development. In Arabidopsis thaliana, TREHALOSE 6-PHOSPHATE SYNTHASE 1 (TPS1) and its product, trehalose 6-phosphate (T6P), are important for the metabolic control of development. tps1 mutants are embryo-lethal and unable to flower when embryogenesis is rescued.
View Article and Find Full Text PDFGenes involved in disease resistance are some of the fastest evolving and most diverse components of genomes. Large numbers of nucleotide-binding, leucine-rich repeat (NLR) genes are found in plant genomes and are required for disease resistance. However, NLRs can trigger autoimmunity, disrupt beneficial microbiota or reduce fitness.
View Article and Find Full Text PDFThe vegetative phase change marks the beginning of the adult phase in the life cycle of plants and is associated with a gradual decline in the microRNA miR156, in response to sucrose status. Trehalose 6-phosphate (T6P) is a sugar molecule with signaling function reporting the current sucrose state. To elucidate the role of T6P signaling in vegetative phase change, molecular, genetic, and metabolic analyses were performed using Arabidopsis thaliana loss-of-function lines in TREHALOSE PHOSPHATE SYNTHASE1 (TPS1), a gene coding for an enzyme that catalyzes the production of T6P.
View Article and Find Full Text PDFHistone acetylation and complexes associated with this process are directly involved in chromatin regulation and gene expression. Among these, NuA4 complex is directly involved in acetylation of histone H4, H2A and H2A.Z.
View Article and Find Full Text PDFIt has recently been shown that RNA 3'-end formation plays a more widespread role in controlling gene expression than previously thought. To examine the impact of regulated 3'-end formation genome-wide, we applied direct RNA sequencing to A. thaliana.
View Article and Find Full Text PDF