Overfeeding triggers homeostatic compensatory mechanisms that counteract weight gain. Here, we show that both lean and diet-induced obese (DIO) male mice exhibit a potent and prolonged inhibition of voluntary food intake following overfeeding-induced weight gain. We reveal that FGF21 is dispensable for this defense against weight gain.
View Article and Find Full Text PDFPeripheral glucagon-like peptide-1 (GLP-1) and cholecystokinin (CCK) are secreted from enteroendocrine cells, and their plasma concentrations increase in response to eating. While the satiating effect of gut-derived CCK on food-intake control is well documented, the effect of peripheral GLP-1 is less clear. There is evidence that native GLP-1 can inhibit food intake only in the fed state but not in the fasting state.
View Article and Find Full Text PDFTriacylglycerol is the most abundant dietary lipid, and a strong stimulator of satiation. Absorption of triacylglycerol in the small intestine occurs in the form of free fatty acids and 2-monoacylglycerol, a process known to trigger not only the release of cholecystokinin (CCK) but also glucagon-like peptide 1 (GLP-1) and peptide YY (PYY). It remains controversial, however, whether endogenously released GLP-1 and PYY are required for fat-induced satiation.
View Article and Find Full Text PDFThis review focuses on recent findings of the physiological and pharmacological role of non-endocannabinoid N-acylethanolamines (NAEs) and 2-monoacylglycerols (2-MAGs) in the intestine and their involvement in the gut-brain signalling. Dietary fat suppresses food intake, and much research concerns the known gut peptides, for example, glucagon-like peptide-1 (GLP-1) and cholecystokinin (CCK). NAEs and 2-MAGs represent another class of local gut signals most probably involved in the regulation of food intake.
View Article and Find Full Text PDFAn important excipient used to overcome poor solubility is cyclodextrin. However, data in the literature suggest that excessive overdosing of cyclodextrins can decrease the absorption of compounds administered with cyclodextrins, due to their lack of release from the complex. γ-Cyclodextrin is digestible in contrast to β-cyclodextrins.
View Article and Find Full Text PDF