Increasing contamination in potable water supplies necessitates the development of sensing methods that provide the speed and selectivity necessary for safety. One promising method relies on recognition and detection at the liquid-liquid interface of dynamic complex emulsions. These all-liquid materials transduce changes in interfacial tensions into optical signals via the coupling of their chemical, physical, and optical properties.
View Article and Find Full Text PDFMembrane distillation (MD) is an emerging thermal desalination process, which can potentially treat high salinity industrial wastewaters, such as shale gas produced water and power plant blowdown. The performance of MD systems is hampered by inorganic scaling, particularly when treating hypersaline industrial wastewaters with high-scaling potential. In this study, we developed a scaling-resistant MD membrane with an engineered "slippery" surface for desalination of high-salinity industrial wastewaters at high water recovery.
View Article and Find Full Text PDFProvision of clean water is among the most serious, long-term challenges in the world. To an ever increasing degree, sustainable water supply depends on the utilization of water of impaired initial quality. This is particularly true in developing nations and in water-stressed areas such as the American Southwest.
View Article and Find Full Text PDFThe experiments described provide insight into the feasibility of using compressible particulate packs to filter live plankton. The pore constriction sizes are controlled by subjecting the filter pack to isotropic confinement, thereby allowing for: (1) enhanced filtration upon confinement and (2) enhanced unclogging upon relaxation. Results show that filtration efficiency increases with increasing confinement; however, complete plankton retention is difficult to attain due to the plankton's ability to pass through pore constrictions that are smaller than the plankton size.
View Article and Find Full Text PDF