The intrinsic peroxidase-like activity of rhodium nanoparticles (RhNPs) and their use as catalytic labels for sensitive colorimetric assays is presented. RhNPs catalyze the oxidation of the peroxidase substrate 3,3,5,5-tetramethylbenzidine (TMB) in the presence of HO to produce a blue reaction product with a maximum absorbance at 652 nm. Kinetic studies show catalysis to follow Michaelis-Menten kinetics and a "ping-pong" mechanism.
View Article and Find Full Text PDFThis work reports a new approach for the determination of phenolic compounds based on their interaction with citrate-capped rhodium nanoparticles. Phenolic compounds (i.e.
View Article and Find Full Text PDFIn this work we describe the fabrication of nanostructured electrocatalytic surfaces based on polyethyleneimine (PEI)-supported rhodium nanoparticles (Rh-NP) over graphite screen-printed electrodes (SPEs) for the determination of hydrogen peroxide in the presence of oxygen. Rh-NP, electrostatically stabilized by citrate anions, were immobilized over graphite SPEs, through coulombic attraction on a thin film of positively charged PEI. The functionalized sensors, polarized at 0.
View Article and Find Full Text PDFWe describe a novel solution-based method for the determination of dissolved organic matter (DOM) relying on the formation of silver nanoparticles (AgNPs) via photo-stimulated reduction of silver ions by humic and fulvic acids. The method is based on natural driven formation of nanoscale materials yielding a direct relationship between DOM concentration and AgNPs formation. The aqueous dispersion of the formed AgNPs show strong and uniform UV-Vis absorption bands between 450 and 550 nm irrespectively of DOM nature and properties (i.
View Article and Find Full Text PDF