Publications by authors named "Vasilii Burtsev"

Distinct advantages of surface enhanced Raman scattering (SERS) in molecular detection can benefit the enantioselective discrimination of specific molecular configurations. However, many of the recent methods still lack versatility and require customized anchors to chemically interact with the studied analyte. In this work, we propose the utilization of helicoid-shaped chiral gold nanoparticles arranged in an ordered array on a gold grating surface for enantioselective SERS recognition.

View Article and Find Full Text PDF

Human activity is the cause of the continuous and gradual grooving of environmental contaminants, where some released toxic and dangerous compounds cannot be degraded under natural conditions, resulting in a serious safety issue. Among them are the widely occurring water-soluble perfluoroalkyl and polyfluoroalkyl substances (PFAS), sometimes called "forever chemicals" because of the impossibility of their natural degradation. Hence, a reliable, expressive, and simple method should be developed to monitor and eliminate the risks associated with these compounds.

View Article and Find Full Text PDF

A heterojunction photo-electrode(s) consisting of porous black titanium oxide (bTiO) and electrochemically self-activated TaS flakes is proposed and utilized for hydrogen evolution reaction (HER). The self-activated TaS flakes provide abundant catalytic sites for HER and the porous bTiO, prepared by electrochemical anodization and subsequent reduction serves as an efficient light absorber, providing electrons for HER. Additionally, Au nanostructures are introduced between bTiO and TaS to facilitate the charge transfer and plasmon-triggering ability of the structure created.

View Article and Find Full Text PDF

Organic electrochemistry is currently experiencing an era of renaissance, which is closely related to the possibility of carrying out organic transformations under mild conditions, with high selectivity, high yields, and without the use of toxic solvents. Combination of organic electrochemistry with alternative approaches, such as photo-chemistry was found to have great potential due to induced synergy effects. In this work, we propose for the first time utilization of plasmon triggering of enhanced and regio-controlled organic chemical transformation performed in photoelectrochemical regime.

View Article and Find Full Text PDF

Transition metal (TM) sulfides belong to the class of 2D materials with a wide application range. Various methods, including solvothermal, hydrothermal, chemical vapor deposition, and quartz ampoule-based approaches, have been employed for the synthesis of TM sulfides. Some of them face limitations due to the low stability of TM sulfides and their susceptibility to oxidation, and others require more sophisticated equipment or complex and rare precursors or are not scalable.

View Article and Find Full Text PDF

Humidity sensors play a critical role in monitoring human activities, environmental health, food processing and storage, and many other fields. Recently, some 2D materials, particularly MXenes, have been considered as promising candidates for creating humidity sensors because of their high surface area, surface-to-bulk ratio, and excellent conductivity, arising from the high concentration and mobility of free electrons. In this work, we propose the plasmon-assisted surface modification and termination tuning of common MXene (TiCT) to enhance their response to humidity and increase their stability against oxidation.

View Article and Find Full Text PDF

Ammonia is one of the most widely produced chemicals worldwide, which is consumed in the fertilizer industry and is also considered an interesting alternative in energy storage. However, common ammonia production is energy-demanding and leads to high CO emissions. Thus, the development of alternative ammonia production methods based on available raw materials (air, for example) and renewable energy sources is highly demanding.

View Article and Find Full Text PDF

Solely light-induced water splitting represents a promising avenue for a carbon-free energy future, based on reliable energy sources. Such processes can be performed using coupled semiconductor materials (the so-called direct Z-scheme design) that facilitate spatial separation of (photo)excited electrons and holes, prevent their recombination, and allow water-splitting half-reactions proceeding at each corresponding semiconductor side. In this work, we proposed and prepared a specific structure, based on WO/CdWO/CdS coupled semiconductors, created by annealing of a common WO/CdS direct Z-scheme.

View Article and Find Full Text PDF
Article Synopsis
  • Detecting trace amounts of poorly soluble pharmaceuticals, like ibuprofen, in environmental and clinical settings is challenging due to factors like low concentrations and complex sample types.
  • This study introduces an innovative approach using on-line flow extraction combined with SERS measurements in a microfluidic setup, specifically targeting ibuprofen in wastewater.
  • The method shows significant benefits, including simplicity, high reliability, and very low detection limits, making it effective for monitoring pharmaceuticals without extensive sample preparation.
View Article and Find Full Text PDF

Remote detection of hydrogen, without the utilization of electronic component or elevated temperature, is one of the hot topics in the hydrogen technology and safety. In this work, the design and realization of the optical fiber-based hydrogen sensor with unique characteristics are proposed. The proposed sensor is based on the gold-coated multimode fiber, providing the plasmon properties, decorated by the IRMOF-20 layer with high selectivity and affinity toward hydrogen.

View Article and Find Full Text PDF