In mice, γδ-T lymphocytes that express the co-stimulatory molecule, CD27, are committed to the IFNγ-producing lineage during thymic development. In the periphery, these cells play a critical role in host defense and anti-tumor immunity. Unlike αβ-T cells that rely on MHC-presented peptides to drive their terminal differentiation, it is unclear whether MHC-unrestricted γδ-T cells undergo further functional maturation after exiting the thymus.
View Article and Find Full Text PDFEarly-life cues shape the immune system during adulthood. However, early-life signaling pathways and their temporal functions are not well understood. Herein, we demonstrate that the cellular inhibitor of apoptosis proteins 1 and 2 (cIAP1/2), which are E3 ubiquitin ligases, sustain interleukin (IL)-17-producing γ δ T cells (γδT17) and group 3 innate lymphoid cells (ILC3) during late neonatal and prepubescent life.
View Article and Find Full Text PDFγδ T cells are unique players in shaping immune responses, lying at the intersection between innate and adaptive immunity. Unlike conventional αβ T cells, γδ T cells largely populate non-lymphoid peripheral tissues, demonstrating tissue specificity, and they respond to ligands in an MHC-independent manner. γδ T cells display rapid activation and effector functions, with a capacity for cytotoxic anti-tumour responses and production of inflammatory cytokines such as IFN-γ or IL-17.
View Article and Find Full Text PDFInterleukin (IL)-17-producing gamma delta (γδ) T (γδT17) cells are an essential part of innate type 3 immunity against numerous pathogens. At the same time, a large body of evidence from mouse models and human clinical studies suggests that γδT17 cells contribute to the pathogenesis of many inflammatory diseases as well as cancer. It is therefore relevant to elucidate their immunobiology in detail and identify molecules and pathways that can regulate their function.
View Article and Find Full Text PDFIn recent years, checkpoint inhibitor (CPI) therapy has shown promising clinical responses across a broad range of cancers. However, many patients remain unresponsive and there is need for improvement. CPI therapy relies on antibody-mediated neutralization of immune inhibitory or checkpoint receptors (ICRs) that constitutively suppress leukocytes.
View Article and Find Full Text PDFT cells of the gamma delta (γδ) lineage are evolutionary conserved from jawless to cartilaginous and bony fish to mammals and represent the "swiss army knife" of the immune system capable of antigen-dependent or independent responses, memory, antigen presentation, regulation of other lymphocytes, tissue homeostasis, and mucosal barrier maintenance, to list a few. Over the last 10 years, γδ T cells that produce the cytokine IL-17 (γδT17) have taken a leading position in our understanding of how our immune system battles infection, inflicts tissue damage during inflammation, and gets rewired by the tumor microenvironment. A lot of what we know about γδT17 cells stems from mouse models, however, increasing evidence implicates these cells in numerous human diseases.
View Article and Find Full Text PDFSMAC antagonization of cIAP1/2 in T 17 cells upregulates cell adhesion and cytoskeleton genes through the NIK-RelB and p52 axis. SMAC also increases the homotypic interactions of T 17 cells through a non-canonical NF-κB- and integrin-mediated mechanism resulting in increased ability of T 17 cells to withstand shear stress.
View Article and Find Full Text PDFInitiation of adaptive immunity to particulate antigens in lymph nodes largely depends on their presentation by migratory dendritic cells (DCs). DC subsets differ in their capacity to induce specific types of immunity, allowing subset-specific DC-targeting to influence vaccination and therapy outcomes. Faithful drug design, however, requires exact understanding of subset-specific versus global activation mechanisms.
View Article and Find Full Text PDFIL-17-producing RORγt+ γδ T cells (γδT17 cells) are innate lymphocytes that participate in type 3 immune responses during infection and inflammation. Herein, we show that γδT17 cells rapidly proliferate within neonatal lymph nodes and gut, where, upon entry, they upregulate T-bet and coexpress IL-17, IL-22, and IFN-γ in a STAT3- and retinoic acid-dependent manner. Neonatal expansion was halted in mice conditionally deficient in STAT5, and its loss resulted in γδT17 cell depletion from all adult organs.
View Article and Find Full Text PDFIL-17-producing gamma delta (γδT17) cells are innate lymphocytes critical for antibacterial protection at barrier surfaces such as the skin but also highly pathogenic during inflammation. It is therefore important to understand the cellular and molecular mechanisms that could counter-balance overt γδT17 cell activation. Immune checkpoint receptors (ICRs) deliver inhibitory signals to activated lymphocytes and have been implicated as negative regulators of mouse γδT17 cells.
View Article and Find Full Text PDFThe transcription factors STAT3 and STAT4 are essential for lymphocyte differentiation and function. Interleukin (IL)-17 producing γδ T (γδT17) cells are innate lymphocytes important for anti-bacterial and inflammatory responses at barrier surfaces. Herein, we examine the role of STAT3 and STAT4 in regulating the homeostasis, activation, and pathogenicity of γδT17 cells.
View Article and Find Full Text PDFSecond mitochondria-derived activator of caspase (SMAC) mimetics (SMs) are selective antagonists of the inhibitor of apoptosis proteins (IAPs), which activate noncanonical NF-κB signaling and promote tumor cell death. Through gene expression analysis, we found that treatment of CD4 T cells with SMs during T helper 17 (T17) cell differentiation disrupted the balance between two antagonistic transcription factor modules. Moreover, proteomics analysis revealed that SMs altered the abundance of proteins associated with cell cycle, mitochondrial activity, and the balance between canonical and noncanonical NF-κB signaling.
View Article and Find Full Text PDFLymphocytes of the gamma delta (γδ) T-cell lineage are evolutionary conserved and although they express rearranged antigen-specific receptors, a large proportion respond as innate effectors. γδ T-cells are poised to combat infection by responding rapidly to cytokine stimuli similar to innate lymphoid cells. This potential to initiate strong inflammatory responses necessitates that inhibitory signals are balanced with activation signals.
View Article and Find Full Text PDFCold Spring Harb Perspect Biol
December 2014
The tumor necrosis factor superfamily (TNFSF) and its corresponding receptor superfamily (TNFRSF) form communication pathways required for developmental, homeostatic, and stimulus-responsive processes in vivo. Although this receptor-ligand system operates between many different cell types and organ systems, many of these proteins play specific roles in immune system function. The TNFSF and TNFRSF proteins lymphotoxins, LIGHT (homologous to lymphotoxins, exhibits inducible expression, and competes with HSV glycoprotein D for herpes virus entry mediator [HVEM], a receptor expressed by T lymphocytes), lymphotoxin-β receptor (LT-βR), and HVEM are used by embryonic and adult innate lymphocytes to promote the development and homeostasis of lymphoid organs.
View Article and Find Full Text PDFThe intestine presents a huge surface area to the outside environment, a property that is of critical importance for its key functions in nutrient digestion, absorption, and waste disposal. As such, the intestine is constantly exposed to dietary and microbial-derived foreign antigens, to which immune cells within the mucosa must suitably respond to maintain intestinal integrity, while also providing the ability to mount effective immune responses to potential pathogens. Dendritic cells (DCs) are sentinel immune cells that play a central role in the initiation and differentiation of adaptive immune responses.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
August 2014
Adenosine is a purine metabolite that can mediate anti-inflammatory responses in the digestive tract through the A(2A) adenosine receptor (A(2A)AR). We examined the role of this receptor in the control of inflammation in the adoptive transfer model of colitis. Infection of A(2A)AR(-/-) mice with Helicobacter hepaticus increased colonic inflammation scores compared with uninfected A(2A)AR controls.
View Article and Find Full Text PDFγδ T cells rapidly secrete inflammatory cytokines at barrier sites that aid in protection from pathogens, but mechanisms limiting inflammatory damage remain unclear. We found that retinoid-related orphan receptor gamma-t (RORγt) and interleukin-7 (IL-7) influence γδ T cell homeostasis and function by regulating expression of the inhibitory receptor, B and T lymphocyte attenuator (BTLA). The transcription factor RORγt, via its activating function-2 domain, repressed Btla transcription, whereas IL-7 increased BTLA levels on the cell surface.
View Article and Find Full Text PDFInnate lymphoid cells encompass a diverse array of lymphocyte subsets with unique phenotype that initiate inflammation and provide host defenses in specific microenvironments. In this study, we identify a rare human CD4(+)CD3(-) innate-like lymphoid population with high TNF expression that is enriched in blood from patients with rheumatoid arthritis. These CD4(+)CD3(-) cells belong to the T cell lineage, but the lack of AgR at the cell surface renders them nonresponsive to TCR-directed stimuli.
View Article and Find Full Text PDFLymphocyte activation is regulated by costimulatory and inhibitory receptors, of which both B and T lymphocyte attenuator (BTLA) and CD160 engage herpesvirus entry mediator (HVEM). Notably, it remains unclear how HVEM functions with each of its ligands during immune responses. In this study, we show that HVEM specifically activates CD160 on effector NK cells challenged with virus-infected cells.
View Article and Find Full Text PDFCD4(+) effector and memory T cells play a pivotal role in the development of both normal and pathogenic immune responses. This review focuses on the molecular and cellular mechanisms that regulate their development, with particular focus on the tumor necrosis factor superfamily members OX40 (TNFRSF4) and CD30 (TNFRSF8). We discuss the evidence that in mice, these molecular signaling pathways act synergistically to regulate the development of both effector and memory CD4(+) T cells but that the cells that regulate memory versus effector function are distinct, effectively allowing the independent regulation of the memory and effector CD4(+) T-cell pools.
View Article and Find Full Text PDFOur previous studies have implicated signaling through the tumor necrosis family receptors OX40 and CD30 as critical for maintaining CD4 memory responses. We show that signals through both molecules are also required for CD4 effector-mediated autoimmune tissue damage. Under normal circumstances, male mice deficient in the forkhead transcription factor FoxP3, which lack regulatory CD4 T cells, develop lethal autoimmune disease in the first few weeks of life.
View Article and Find Full Text PDFHere, we identify cells within human adult secondary lymphoid tissues that are comparable in phenotype and location to the lymphoid tissue inducer (LTi) cells that persist in the adult mouse. Identified as CD117(+) CD3(-) CD56(-) cells, like murine LTi cells, they lack expression of many common lineage markers and express CD127, OX40L and TRANCE. These cells were detected at the interface between the B- and T- zones, as well as at the subcapsular sinus in LNs, the location where LTi cells reside in murine spleen and LNs.
View Article and Find Full Text PDFThe pathogenic outcomes of viral infection are often reminiscent of a dysfunctional immune system. Thus, cytomegalovirus (CMV) causes disruption of the lymphoid architecture and the functionality of lymphocytes, both of which are features of CD30 deficiency. It was therefore plausible that CD30 might interfere with CMV infection.
View Article and Find Full Text PDFPrior to acquiring a memory phenotype, antigen-activated CD8(+) T cells need to expand and then undergo a contraction phase. Utilizing two different antigenic stimuli, we provide evidence that the tumor necrosis factor receptors OX40 and CD30 integrate synergistic signals during the expansion phase to help maintain CD8(+) effectors. Thus, double deficiency in OX40 and CD30 leads to CD8(+) cell loss during expansion after immunization either with OVA or with murine CMV.
View Article and Find Full Text PDFLymphoid tissue inducer cells express a diverse array of tumor necrosis family ligands, including those that bind CD30 and the lymphotoxin beta receptor. Both of these signaling pathways have been linked with B/T segregation in the spleen. In this study, we have dissected a lymphotoxin-independent CD30-dependent signal for the induction of expression of the T zone chemokine, CCL21.
View Article and Find Full Text PDF