Publications by authors named "Vasileios Anagnostopoulos"

The use of nanoscale delivery platforms holds tremendous potential to overcome the current limitations associated with the conventional delivery of genetic materials and hydrophobic compounds. Therefore, there is an imperative need to develop a suitable alternative nano-enabled delivery platform to overcome these limitations. This work reports the first one-step hydrothermal synthesis of chitosan functionalized selenium nanoparticles (Selenium-chitosan, SeNP) that are capable of serving as a versatile nanodelivery platform for different types of active ingredients.

View Article and Find Full Text PDF

Although Mn(III) complexes with organic ligands have been previously identified, the information about their stability and reactivity is scarce. In the present study, we analyzed the formation and stability of three different complexes: Mn(III)-citrate, Mn(III)-tartrate, and Mn(III)-humic acid (HA), as well as their reactivity toward an element of high environmental concern, lead (Pb).Our results indicate that the stability of studied complexes is highly dependent on pH.

View Article and Find Full Text PDF

The key role of manganese (Mn) in the biogeochemical cycle of trace elements has been of great interest in recent years. Nevertheless, the redox properties of aqueous Mn(III) have been studied to a lesser extent. Mn(III) is not stable in solution by itself.

View Article and Find Full Text PDF

Chronic skin wound is a chronic illness that possesses a risk of infection and sepsis. In particular, infections associated with antibiotic-resistant bacterial strains are challenging to treat. To combat this challenge, a suitable alternative that is complementary to antibiotics is desired for wound healing.

View Article and Find Full Text PDF

The redox capabilities of birnessite minerals are contingent upon the physical characteristics of the solid, indicating that different allotropes have various reactivities. Here, the role of these structural differences on the oxidation of iodine, a risk driving environmental contaminant in several federal complexes, was investigated. The mechanism of which can be seen here, with one of the minerals of study, acid birnessite.

View Article and Find Full Text PDF

Introduction: Pneumocephalus after chronic subdural hematoma (CSDH) evacuation is a potential predictor of hematoma recurrence.

Research Question: To study the feasibility and safety of a novel CSDH evacuation technique using a valve-controlled method to avoid pneumocephalus.

Material And Methods: In a retrospective case series, we evacuated CSDH using very low-pressure valve-controlled drains and recorded the neurological, radiological, and functional outcomes.

View Article and Find Full Text PDF

Linear nitramines are potentially carcinogenic environmental contaminants. The NnlA enzyme from sp. strain JS1663 degrades the nitramine -nitroglycine (NNG)-a natural product produced by some bacteria-to glyoxylate and nitrite (NO).

View Article and Find Full Text PDF

The hemerythrin-like protein from Mycobacterium kansasii (Mka HLP) is a member of a distinct class of oxo-bridged diiron proteins that are found only in mycobacterial species that cause respiratory disorders in humans. Because it had been shown to exhibit weak catalase activity and a change in absorbance on exposure to nitric oxide (NO), the reactivity of Mka HLP toward NO was examined under a variety of conditions. Under anaerobic conditions, we found that NO was converted to nitrite (NO) via an intermediate, which absorbed light at 520 nm.

View Article and Find Full Text PDF

A novel Au nanoparticle (AuNP)-biopolymer coated carbon screen-printed electrode (SPE) sensor was developed through the co-electrodeposition of Au and chitosan for mercury (Hg) ion detection. This new sensor showed successful Hg detection in landfill leachate using square wave anodic stripping voltammetry (SWASV) with an optimized condition: a deposition potential of -0.6 V, deposition time of 200 s, amplitude of 25 mV, frequency of 60 Hz, and square wave step voltage of 4 mV.

View Article and Find Full Text PDF

Remediation efforts for the abatement of Tc-99 contamination in the environment have traditionally focused on the reduction of soluble pertechnetate (Tc(vii)O4-) to insoluble, and less mobile, technetium(iv) oxide (TcO2). Effectiveness of the reductive immobilization of Tc-99 depends on the susceptibility of TcO2 to oxidation to TcO4-in situ, as it is subject to dissolution by oxidizing agents, such as oxygen. Manganese minerals can be a liability for the long-term in situ immobilization of Tc-99, even in suboxic and anoxic systems due to their strong oxidizing capacity.

View Article and Find Full Text PDF

Uranium is a contaminant of major concern across the US Department of Energy complex that served a leading role in nuclear weapon fabrication for half a century. In an effort to decrease the concentration of soluble uranium, tripolyphosphate injections were identified as a feasible remediation strategy for sequestering uranium in situ in contaminated groundwater at the Hanford Site. The introduction of sodium tripolyphosphate into uranium-bearing porous media results in the formation of uranyl phosphate minerals (autunite) of general formula {X[(UO)(PO)]·nHO}, where X is a monovalent or divalent cation.

View Article and Find Full Text PDF

The present study explores a novel application of Huma-K, a commercially available, unrefined humic substance, as a promising low-cost source of organic matter for in situ remediation of contaminated acidic groundwater plumes. This can be achieved by creating a humic-rich coating on the surface of minerals which can enhance the sorption of contaminants from groundwater. Huma-K was characterized by means of scanning electron microscopy equipped with energy dispersive spectroscopy, Fourier-transform infrared analysis, and potentiometric titrations.

View Article and Find Full Text PDF

CD62L governs the circulation of CD8(+) T cells between lymph nodes and peripheral tissues, whereby the expression of CD62L by CD8(+) T cells promotes their recirculation through lymph nodes. As such, CD62L participates in the fate of adoptively transferred CD8(+) T cells and may control their effectiveness for cancer immunotherapy, including settings in which host preconditioning results in the acute lymphopenia-induced proliferation of the transferred cells. Indeed, previous studies correlated CD62L expression by donor CD8(+) cells with the success rate of adoptive cell therapy (ACT).

View Article and Find Full Text PDF