Publications by authors named "Vasil Kolev"

The aim of this research was to enhance understanding of the relationship between brief music listening and working memory (WM) functions. The study extends a previous large-scale experiment in which the effects of brief exposure to music on verbal WM were explored. In the present second phase of the experiment, these effects were assessed for the visuospatial subcomponent of WM.

View Article and Find Full Text PDF

The Bulgarian research landscape, presented mainly by the research institutes that are part of the Bulgarian Academy of Sciences and the Agricultural Academy, needs diversification to match the research and innovation potential of the other European Union (EU) countries. This article describes the establishment of the Center of Plant Systems Biology and Biotechnology (CPSBB), a new innovative type of independent research organization that is changing the research landscape in Bulgaria. Supported by the EU Commission, Bulgarian Government, and Plovdiv Municipality, CPSBB has quickly become the leading plant science institute in Bulgaria, creating knowledge in diverse fields such as bioinformatics, biotechnology, genetics and genomics, metabolomics, and systems biology.

View Article and Find Full Text PDF

Unlabelled: Based on previous concepts that a distributed theta network with a central "hub" in the medial frontal cortex is critically involved in movement regulation, monitoring, and control, the present study explored the involvement of this network in error processing with advancing age in humans. For that aim, the oscillatory neurodynamics of motor theta oscillations was analyzed at multiple cortical regions during correct and error responses in a sample of older adults. Response-related potentials (RRPs) of correct and incorrect reactions were recorded in a four-choice reaction task.

View Article and Find Full Text PDF

It has been demonstrated that during motor responses, the activation of the motor cortical regions emerges in close association with the activation of the medial frontal cortex implicated with performance monitoring and cognitive control. The present study explored the oscillatory neurodynamics of response-related potentials during correct and error responses to test the hypothesis that such continuous communication would modify the characteristics of motor potentials during performance errors. Electroencephalogram (EEG) was recorded at 64 electrodes in a four-choice reaction task and response-related potentials (RRPs) of correct and error responses were analysed.

View Article and Find Full Text PDF

Objective: Both cognitive and primary motor networks alter with advancing age in humans. The networks activated in response to external environmental stimuli supported by theta oscillations remain less well explored. The present study aimed to characterize the effects of aging on the functional connectivity of response-related theta networks during sensorimotor tasks.

View Article and Find Full Text PDF

Multi-tasking is usually impaired in older people. In multi-tasking, a fixed order of sub-tasks can improve performance by promoting a time-structured preparation of sub-tasks. How proactive control prioritizes the pre-activation or inhibition of complex tasks in older people has received no sufficient clarification so far.

View Article and Find Full Text PDF

Research on aesthetic descriptors of art in different languages is scarce. The aim of the present study was to elucidate the conceptual structure of aesthetic experiences of three forms of art (music, visual arts and literature) in the Greek language, which has not been explored so far. It was further aimed to study if biological and cognitive factors such as age and gender might produce differences in art appreciation.

View Article and Find Full Text PDF

Meditation practice is suggested to engage training of cognitive control systems in the brain. To evaluate the functional involvement of attentional and cognitive monitoring processes during meditation, the present study analysed the electroencephalographic synchronization of fronto-parietal (FP) and medial-frontal (MF) brain networks in highly experienced meditators during different meditation states (focused attention, open monitoring and loving kindness meditation). The aim was to assess whether and how the connectivity patterns of FP and MF networks are modulated by meditation style and expertise.

View Article and Find Full Text PDF

Meditation has been integrated into different therapeutic interventions. To inform the evidence-based selection of specific meditation types it is crucial to understand the neural processes associated with different meditation practices. Here we explore commonalities and differences in electroencephalographic oscillatory spatial synchronisation patterns across three important meditation types.

View Article and Find Full Text PDF

It has been suggested that a distributed oscillatory system in the brain operating in the theta (3.5-7 Hz) frequency range plays a major role in coordinating motor actions. The major objective of the present study was to explore the effects of human aging on the neurodynamics of motor-related EEG theta activity during correct motor response generation.

View Article and Find Full Text PDF

Co-existent sleep spindles and slow waves have been viewed as a mechanism for offline information processing. Here we explored if the temporal synchronization between slow waves and spindle activity during slow wave sleep (SWS) in humans was modulated by preceding functional activations during pre-sleep learning. We activated differentially the left and right hemisphere before sleep by using a lateralized variant of serial response time task (SRTT) and verified these inter-hemispheric differences by analysing alpha and beta electroencephalographic (EEG) activities during learning.

View Article and Find Full Text PDF

Study Objectives: The present study explored the sleep mechanisms which may support awareness of hidden regularities.

Methods: Before sleep, 53 participants learned implicitly a lateralized variant of the serial response-time task in order to localize sensorimotor encoding either in the left or right hemisphere and induce implicit regularity representations. Electroencephalographic (EEG) activity was recorded at multiple electrodes during both task performance and sleep, searching for lateralized traces of the preceding activity during learning.

View Article and Find Full Text PDF

In the neglect syndrome, the perceptual deficit for contra-lesional hemi-space is increasingly viewed as a dysfunction of fronto-parietal cortical networks, the disruption of which has been described in neuroanatomical and hemodynamic studies. Here we exploit the superior temporal resolution of electroencephalography (EEG) to study dynamic transient connectivity of fronto-parietal circuits at early stages of visual perception in neglect. As reflected by inter-regional phase synchronization in a full-field attention task, two functionally distinct fronto-parietal networks, in beta (15-25Hz) and theta (4-8Hz) frequency bands, were related to stimulus discrimination within the first 200 ms of visual processing.

View Article and Find Full Text PDF

Only some, but not all, individuals who practice tasks with dual structure, overt and covert, are able to comprehend consciously a hidden regularity. The formation of implicit representations of regularity has been proposed to be critical for subsequent awareness. However, explicit knowledge also has been predicted by the activation of executive control systems during task encoding.

View Article and Find Full Text PDF

Sleep has been identified as a critical brain state enhancing the probability of gaining insight into covert task regularities. Both non-rapid eye movement (NREM) and rapid eye movement (REM) sleep have been implicated with offline re-activation and reorganization of memories supporting explicit knowledge generation. According to two-stage models of sleep function, offline processing of information during sleep is sequential requiring multiple cycles of NREM and REM sleep stages.

View Article and Find Full Text PDF

Whether, and how, explicit knowledge about some regularity arises from implicit sensorimotor learning by practice has been a matter of long-standing debate. Previously, we had found in the number reduction task that participants who will acquire explicit knowledge differ from other participants in their event-related potentials (ERPs) already at task onset. In the present study, we investigated such ERP precursors and correlates both of explicit and of sensorimotor knowledge (response speeding) about the regular sequence in a large sample of participants (n≈100) in the serial response time task.

View Article and Find Full Text PDF

Previous studies have found that event-related theta and gamma oscillations elicited in an auditory selective attention task are deviant in children with attention deficit/hyperactivity disorder (ADHD). It has been suggested that these deviations are associated with deficient motor inhibition in ADHD, which may lead to increased excitability of not only the motor generation networks but also the networks involved in sensory and cognitive processing of the stimulus requiring motor response. Within this suggestion, the present study used the same experimental database to compare the motor cortical activation of healthy controls and children with ADHD during the performance of the auditory selective attention task.

View Article and Find Full Text PDF

Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) have been used to study the neural correlates of reward anticipation, but the interrelation of EEG and fMRI measures remains unknown. The goal of the present study was to investigate this relationship in response to a well established reward anticipation paradigm using simultaneous EEG-fMRI recording in healthy human subjects. Analysis of causal interactions between the thalamus (THAL), ventral-striatum (VS), and supplementary motor area (SMA), using both mediator analysis and dynamic causal modeling, revealed that (1) THAL fMRI blood oxygenation level-dependent (BOLD) activity is mediating intermodal correlations between the EEG contingent negative variation (CNV) signal and the fMRI BOLD signal in SMA and VS, (2) the underlying causal connectivity network consists of top-down regulation from SMA to VS and SMA to THAL along with an excitatory information flow through a THAL→VS→SMA route during reward anticipation, and (3) the EEG CNV signal is best predicted by a combination of THAL fMRI BOLD response and strength of top-down regulation from SMA to VS and SMA to THAL.

View Article and Find Full Text PDF

In recent years, vibrant research has developed on "consolidation" during sleep: To what extent are newly experienced impressions reprocessed or even restructured during sleep? We used the number reduction task (NRT) to study if and how sleep does not only reiterate new experiences but may even lead to new insights. In the NRT, covert regularities may speed responses. This implicit acquisition of regularities may become explicitly conscious at some point, leading to a qualitative change in behavior which reflects this insight.

View Article and Find Full Text PDF

In addition to active wake, emotions are generated and experienced in a variety of functionally different states such as those of sleep, during which external stimulation and cognitive control are lacking. The neural basis of emotions can be specified by regarding the multitude of emotion-related brain states, as well as the distinct neuro- and psychodynamic stages (generation and regulation) of emotional experience.

View Article and Find Full Text PDF

Seeking for the mechanisms by which methylphenidate (MPH) improves behavior has demonstrated that MPH modulates excitability in the primary motor cortex. However, little is known about the influence of MPH on top-down controlled mechanisms in the sensory domain. The present study explored the effects of MPH on the activation of visual cortices in healthy adults who performed a cued visuo-motor task in a double-blind placebo-controlled crossover design.

View Article and Find Full Text PDF

The number reduction task (NRT) allows us to study the transition from implicit knowledge of hidden task regularities to explicit insight into these regularities. To identify sleep-associated neurophysiological indicators of this restructuring of knowledge representations, we measured frequency-specific power of EEG while participants slept during the night between two sessions of the NRT. Alpha (8-12 Hz) EEG power during slow wave sleep (SWS) emerged as a specific marker of the transformation of presleep implicit knowledge to postsleep explicit knowledge (ExK).

View Article and Find Full Text PDF

The maintenance of stable goal-directed behaviour is a hallmark of conscious executive control in humans. Notably, both correct and error human actions may have a subconscious activation-based determination. One possible source of subconscious interference may be the default mode network that, in contrast to attentional network, manifests intrinsic oscillations at very low (<0.

View Article and Find Full Text PDF

Background: Although the performance of children with attention-deficit/hyperactivity disorder (ADHD) is impaired in a variety of cognitive tasks, the specific capacity of strategic readaptation after errors as a source of behavioral deficits is not sufficiently understood. This study used an extended and refined behavioral parameterization to assess performance monitoring and posterror adaptation in children with ADHD.

Methods: Twenty-eight healthy control subjects and 47 ADHD patients (7-16 years of age, all males, matched for age and IQ) performed a visual flanker task in which targets were congruent or incongruent with preceding flankers.

View Article and Find Full Text PDF