Among biodegradable polymers, polylactides (PLAs) have attracted considerable interest because the monomer can be produced from renewable resources. Since their initial degradability strongly affects commercial application fields, it is necessary to manage the degradation properties of PLAs to make them more commercially attractive. To control their degradability, poly(lactide-co-glycolide) (PLGA) copolymers of glycolide and isomer lactides (LAs) were synthesized, and their enzymatic and alkaline degradation rates of PLGA monolayers as functions of glycolide acid (GA) composition were systematically investigated by the Langmuir technique.
View Article and Find Full Text PDFThe presence of meso, macro, and microplastics (MPs) in aquatic environments has raised concerns due to their potential risks to aquatic as well as human life. Though plastics are considered to be inert in nature, MPs with toxic additives and accumulated contaminants have harmful ecological effects. Reports of absorption of MPs by internal tissues and toxicity in vital organs such as lung cells, liver, and brain cells have proved its serious health hazards.
View Article and Find Full Text PDF