Abundant ribonucleoside-triphosphate (rNTP) incorporation into DNA by DNA polymerases in the form of ribonucleoside monophosphates (rNMPs) is a widespread phenomenon in nature, resulting in DNA-structural change and genome instability. The rNMP distribution, characteristics, hotspots and association with DNA metabolic processes in human mitochondrial DNA (hmtDNA) remain mostly unknown. Here, we utilize the ribose-seq technique to capture embedded rNMPs in hmtDNA of six different cell types.
View Article and Find Full Text PDFRecent advances highlight that inflammation is critical to Alzheimer Disease (AD) pathogenesis. Indeed, several diseases characterized by inflammation are considered risk factors for AD, such as type 2 diabetes, obesity, hypertension, and traumatic brain injury. Moreover, allelic variations in genes involved in the inflammatory cascade are risk factors for AD.
View Article and Find Full Text PDFMitochondria are the only organelles, along with the nucleus, that have their own DNA. Mitochondrial DNA (mtDNA) is a double-stranded circular molecule of ~16.5 kbp that can exist in multiple copies within the organelle.
View Article and Find Full Text PDFAlzheimer's disease (AD) is the most common form of dementia characterized by progressive memory loss and cognitive decline. Although neuroinflammation and oxidative stress are well-recognized features of AD, their correlations with the early molecular events characterizing the pathology are not yet well clarified. Here, we characterize the role of RAGE-TXNIP axis in neuroinflammation in relation to amyloid-beta (Aβ) burden in both in vivo and in vitro models.
View Article and Find Full Text PDFAPE1 is a multifunctional protein which plays a central role in the maintenance of nuclear and mitochondrial genomes repairing DNA lesions caused by oxidative and alkylating agents. In addition, it works as a redox signaling protein regulating gene expression by interacting with many transcriptional factors. Apart from these canonical activities, recent studies have shown that APE1 is also enzymatically active on RNA molecules.
View Article and Find Full Text PDFBackground: Hepatocellular carcinoma (HCC) is the leading cause of primary liver cancers. Surveillance of individuals at specific risk of developing HCC, early diagnostic markers, and new therapeutic approaches are essential to obtain a reduction in disease-related mortality. Apurinic/apyrimidinic endonuclease 1 (APE1) expression levels and its cytoplasmic localization have been reported to correlate with a lower degree of differentiation and shorter survival rate.
View Article and Find Full Text PDFBackground: The clinical outcome of patients affected by dilated cardiomyopathy (DCM) is heterogeneous, since its pathophysiology is only partially understood. Interleukin 1β levels could predict the mortality and necessity of cardiac transplantation of DCM patients.
Objective: To investigate mechanisms triggering sterile inflammation in dilated cardiomyopathy (DCM).
Although the large majority of mitochondrial proteins are nuclear encoded, for their correct functioning mitochondria require the expression of 13 proteins, two rRNA, and 22 tRNA codified by mitochondrial DNA (mtDNA). Once transcribed, mitochondrial RNA (mtRNA) is processed, mito-ribosomes are assembled, and mtDNA-encoded proteins belonging to the respiratory chain are synthesized. These processes require the coordinated spatio-temporal action of several enzymes, and many different factors are involved in the regulation and control of protein synthesis and in the stability and turnover of mitochondrial RNA.
View Article and Find Full Text PDFAddress correspondence to Carlo Vascotto, Department of Medical and Biological Sciences, University of Udine, Udine, 33100, Italy. E-mail: carlo.vascotto@uniud.
View Article and Find Full Text PDFRNA binding proteins (RBPs) play a central role in cell physiology and pathology. Among them, HuR is a nuclear RBP, which shuttles to the cytoplasm to allow its RNA targets processing. HuR over-expression and delocalization are often associated to cell transformation.
View Article and Find Full Text PDFObjective: Human Hepatocellular Carcinoma (HCC) is the fifth most frequent neoplasm worldwide and the most serious complication of long-standing chronic liver diseases (CLD). Its development is associated with chronic inflammation and sustained oxidative stress. Deregulation of apurinic apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1), a master regulator of cellular response to oxidative stress, has been associated with poor prognosis in several cancers including HCC.
View Article and Find Full Text PDFAPE1 is a multifunctional protein with a fundamental role in repairing nuclear and mitochondrial DNA lesions caused by oxidative and alkylating agents. Unfortunately, comprehensions of the mechanisms regulating APE1 intracellular trafficking are still fragmentary and contrasting. Recent data demonstrate that APE1 interacts with the mitochondrial import and assembly protein Mia40 suggesting the involvement of a redox-assisted mechanism, dependent on the disulfide transfer system, to be responsible of APE1 trafficking into the mitochondria.
View Article and Find Full Text PDFSevere hyperbilirubinemia is toxic during central nervous system development. Prolonged and uncontrolled high levels of unconjugated bilirubin lead to bilirubin-induced encephalopathy and eventually death by kernicterus. Despite extensive studies, the molecular and cellular mechanisms of bilirubin toxicity are still poorly defined.
View Article and Find Full Text PDFThe apurinic/apyrimidinic endonuclease 1 (APE1) is a protein central to the base excision DNA repair pathway and operates in the modulation of gene expression through redox-dependent and independent mechanisms. Aberrant expression and localization of APE1 in tumors are recurrent hallmarks of aggressiveness and resistance to therapy. We identified and characterized the molecular association between APE1 and nucleophosmin (NPM1), a multifunctional protein involved in the preservation of genome stability and rRNA maturation.
View Article and Find Full Text PDFCardiac stem cells (CSC) from explanted decompensated hearts (E-CSC) are, with respect to those obtained from healthy donors (D-CSC), senescent and functionally impaired. We aimed to identify alterations in signaling pathways that are associated with CSC senescence. Additionally, we investigated if pharmacological modulation of altered pathways can reduce CSC senescence in vitro and enhance their reparative ability in vivo.
View Article and Find Full Text PDFUnlabelled: Low-to-moderate levels of reactive oxygen species (ROS) govern different steps of neurogenesis via molecular pathways that have been decrypted only partially. Although it has been postulated that redox-sensitive molecules are involved in neuronal differentiation, the molecular bases for this process have not been elucidated yet. The aim of this work was therefore to study the role played by the redox-sensitive, multifunctional protein APE1/Ref-1 (APE1) in the differentiation process of human adipose tissue-derived multipotent adult stem cells (hAT-MASC) and embryonic carcinoma stem cells (EC) towards a neuronal phenotype.
View Article and Find Full Text PDFObjectives: To correlate the expression profile of human apurinic endonuclease/redox factor 1 (APE1/Ref-1) with that of nucleolar/nucleoplasmic protein nucleophosmin 1 (NPM1) in association with the aggressiveness and progression of high-grade ovarian serous cancer.
Methods: Retrospective study analyzing a tissue microarray of 73 women affected by high-grade ovarian serous cancer. Protein expression was assessed by immunohistochemistry on primary tumor masses and synchronous peritoneal metastases if present.
Apurinic/apyrimidinic endonuclease 1 (APE1) is a multifunctional protein contributing to genome stability via repair of DNA lesions via the base excision repair pathway. It also plays a role in gene expression regulation and RNA metabolism. Another, poorly characterized function is its ability to bind to negative calcium responsive elements (nCaRE) of some gene promoters.
View Article and Find Full Text PDFIt is well established that osteoblasts, the key cells involved in bone formation during development and in adult life, secrete a number of glycoproteins harboring autocrine and paracrine functions. Thus, investigating the osteoblastic secretome could yield important information for the pathophysiology of bone. In the present study, we characterized for the first time the secretome of human Hobit osteoblastic cells.
View Article and Find Full Text PDFClinical approaches for tumor treatment often rely on combination therapy where a DNA damaging agent is used in combination with a DNA repair protein inhibitor. For this reason, great efforts have been made during the last decade to identify inhibitors of DNA repair proteins or, alternatively, small molecules that specifically alter protein stability or trafficking. Unfortunately, when studying these drug candidates, classical biochemical approaches are prone to artifacts.
View Article and Find Full Text PDFAPE1/Ref-1 is a main regulator of cellular response to oxidative stress via DNA-repair function and co-activating activity on the NF-κB transcription factor. APE1 is central in controlling the oxidative stress-based inflammatory processes through modulation of cytokines expression and its overexpression is responsible for the onset of chemoresistance in different tumors including hepatic cancer. We examined the functional role of APE1 overexpression during hepatic cell damage related to fatty acid accumulation and the role of the redox function of APE1 in the inflammatory process.
View Article and Find Full Text PDFNucleophosmin 1 (NPM1) is a nucleolar protein involved in ribosome biogenesis, stress responses and maintaining genome stability. One-third of acute myeloid leukemias (AMLs) are associated with aberrant localization of NPM1 to the cytoplasm (NPM1c+). This mutation is critical during leukemogenesis and constitutes a good prognostic factor for chemotherapy.
View Article and Find Full Text PDF