Azoles are commonly used for the treatment of fungal infections, and the ability of human fungal pathogens to rapidly respond to azole treatment is critical for the development of antifungal resistance. While the roles of genetic mutations, chromosomal rearrangements, and transcriptional mechanisms in azole resistance have been well-characterized, very little is known about post-transcriptional and translational mechanisms that drive this process. In addition, most previous genome-wide studies have focused on transcriptional responses to azole treatment and likely serve as inaccurate proxies for changes in protein expression due to extensive post-transcriptional and translational regulation.
View Article and Find Full Text PDFCandida albicans, a major human fungal pathogen associated with high mortality and/or morbidity rates in a wide variety of immunocompromised individuals, undergoes a reversible morphological transition from yeast to filamentous cells that is required for virulence. While previous studies have identified and characterized global transcriptional mechanisms important for driving this transition, as well as other virulence properties, in C. albicans and other pathogens, considerably little is known about the role of genome-wide translational mechanisms.
View Article and Find Full Text PDFJ Fungi (Basel)
January 2020
Many pathogenic species possess the ability to undergo a reversible morphological transition from yeast to filamentous cells. In , the most frequently isolated human fungal pathogen, multiple lines of evidence strongly suggest that this transition is associated with virulence and pathogenicity. While it has generally been assumed that non- species (NACS) are less pathogenic than , in part, because they do not filament as well, definitive evidence is lacking.
View Article and Find Full Text PDFWhile virulence properties of Candida albicans, the most commonly isolated human fungal pathogen, are controlled by transcriptional and post-translational mechanisms, considerably little is known about the role of post-transcriptional, and particularly translational, mechanisms. We demonstrate that UME6, a key filament-specific transcriptional regulator whose expression level is sufficient to determine C. albicans morphology and promote virulence, has one of the longest 5' untranslated regions (UTRs) identified in fungi to date, which is predicted to form a complex and extremely stable secondary structure.
View Article and Find Full Text PDFBackground: A recent nested case-control study found that the presence of antibodies against Trichomonas vaginalis, a common nonviral sexually transmitted infection, was positively associated with subsequent incidence of prostate cancer. We confirmed these findings in an independent population and related serostatus for antibodies against T vaginalis to prostate cancer incidence and mortality.
Methods: We conducted a case-control study nested within the Physicians' Health Study that included 673 case subjects with prostate cancer and 673 individually matched control subjects who had available plasma samples.
Background: Trichomonas vaginalis is a human urogenital pathogen responsible for trichomonosis, the number-one, non-viral sexually transmitted disease (STD) worldwide, while T. tenax is a commensal of the human oral cavity, found particularly in patients with poor oral hygiene and advanced periodontal disease. The extent of genetic identity between T.
View Article and Find Full Text PDFWe showed recently that contact of human vaginal epithelial cells (VECs) by Trichomonas vaginalis and incubation with trichomonad proteins in conditioned medium induced expression of VEC genes. We performed 2-D SDS-PAGE followed by MALDI-TOF to identify the major secreted proteins. Based on protein abundance and separation of spots in 2-D gels, 32 major secreted proteins were examined, which gave 19 proteins with accession numbers.
View Article and Find Full Text PDFHost parasitism by Trichomonas vaginalis is complex, and the adhesion to vaginal epithelial cells (VECs) by trichomonads is preparatory to colonization of the vagina. Since we showed increased synthesis of adhesins after contact with VECs (A. F.
View Article and Find Full Text PDFTrichomonas vaginalis, an ancient protist, colonizes the vaginal mucosa causing trichomonosis, a vaginitis that sometimes leads to severe health complications. Preparatory to colonization of the vagina is the adhesion to vaginal epithelial cells (VECs) by trichomonads. We hypothesized that VECs alter the gene expression to form a complex signalling cascade in response to trichomonal adherence.
View Article and Find Full Text PDFBackground: Trichomonosis, caused by Trichomonas vaginalis, is the number one, nonviral sexually transmitted infection that has adverse consequences for the health of women and children. The interaction of T. vaginalis with vaginal epithelial cells (VECs), a step preparatory to infection, is mediated in part by the prominent surface protein AP65.
View Article and Find Full Text PDFBackground: The parasitic protozoa belonging to Leishmania (L.) donovani complex possess abundant, developmentally regulated cathepsin L-like cysteine proteases. Previously, we have reported the isolation of cysteine protease gene, Ldccys2 from Leishmania (L.
View Article and Find Full Text PDFInitiation of protein synthesis is a major post-transcriptional regulatory step in gene expression. The initiator tRNA gene from Mycobacterium smegmatis, a fast-growing mycobacterium, was characterized and compared with its counterpart from Mycobacterium tuberculosis, a slow-growing mycobacterium. In both mycobacteria, the functional initiator tRNA genes were found in a single copy.
View Article and Find Full Text PDFFor the first time, we have reported the establishment and serial propagation of an axenic culture of Leishmania chagasi amastigote-like forms. Parasites were characterized by microscopic evaluation and by the expression of two stage-specific genes, A2 and Ldccys2 amastigote-specific cysteine protease. The differentiated amastigote-like forms were maintained by serial cultivation.
View Article and Find Full Text PDFCathepsin B-like genes from Leishmania donovani and Leishmania chagasi have been isolated and characterized. It is a single gene, which is constitutively expressed in all the life cycle stages of the parasite. Studies using cathepsin B-specific inhibitor treatment suggested that cathepsin B does not seem to play a role in the promastigote stages of the parasite, however it aids in the parasite survival within the host macrophages.
View Article and Find Full Text PDFFor the first time, we report the genomic organization and characterization of Cathepsin L-like cysteine protease gene cluster from the members of Leishmania donovani complex. The cysteine protease gene cluster of Leishmania chagasi has five copies of tandemly arranged genes. The first gene (Ldccys1A) is identical to Ldccys1 cDNA and is predominantly expressed in promastigotes.
View Article and Find Full Text PDF