Objective: To evaluate the prevalence and features of policies regulating abortion in U.S. teaching hospitals.
View Article and Find Full Text PDFFetal syncytiotrophoblasts form a unique fused multinuclear surface that is bathed in maternal blood, and constitutes the main interface between fetus and mother. Syncytiotrophoblasts are exposed to pathogens circulating in maternal blood, and appear to have unique resistance mechanisms against microbial invasion. These are due in part to the lack of intercellular junctions and their receptors, the Achilles heel of polarized mononuclear epithelia.
View Article and Find Full Text PDFToxoplasma gondii is a ubiquitous, obligate intracellular parasite capable of crossing the placenta to cause spontaneous abortion, preterm labor, or significant disease in the surviving neonate. Exploration of the cellular and histological components of the placental barrier is in its infancy, and both how and where T. gondii breaches it are unknown.
View Article and Find Full Text PDFListeria monocytogenes is a facultative intracellular bacterial pathogen that can infect the placenta, a chimeric organ made of maternal and fetal cells. Extravillous trophoblasts (EVT) are specialized fetal cells that invade the uterine implantation site, where they come into direct contact with maternal cells. We have shown previously that EVT are the preferred site of initial placental infection.
View Article and Find Full Text PDFListeria monocytogenes is an important cause of maternal-fetal infections and serves as a model organism to study these important but poorly understood events. L. monocytogenes can infect non-phagocytic cells by two means: direct invasion and cell-to-cell spread.
View Article and Find Full Text PDFIntermetallic PtPb nanoparticles have been synthesized by two solution-phase reduction methods. In the first (PtPb-B), Pt and Pb salts were reduced by sodium borohydride in methanol at room temperature. In the second (PtPb-N), metal-organic Pt and Pb precursors were reduced by sodium naphthalide in diglyme at 135 degrees C.
View Article and Find Full Text PDF