Publications by authors named "Varvara A Pozdina"

A series of new composite materials based on FeO magnetic nanoparticles coated with SiO (or aminated SiO) were synthesized. It has been shown that the use of -(phosphonomethyl)iminodiacetic acid (PMIDA) to stabilize nanoparticles before silanization ensures the increased content of a SiO phase in the FeO@SiO nanocomposites (NCs) in comparison with materials obtained under similar conditions, but without PMIDA. It has been demonstrated for the first time that the presence of PMIDA on the surface of NCs increases the level of Dox loading due to specific binding, while surface modification with 3-aminopropylsilane, on the contrary, significantly reduces the sorption capacity of materials.

View Article and Find Full Text PDF

New 2-aryl-1,2,3-triazolopyrimidines were designed, synthesized, and characterized. Their optical properties were thoroughly studied in the solid phase, in solution and in a biological environment. Density Functional Theory (DFT) based calculations were performed, including the molecular geometry optimization for both the ground state and the first singlet excited state, the prediction of the UV-Vis absorption and fluorescence spectra, the determination of the molecular electrostatic properties and the solvent effect on the optical properties.

View Article and Find Full Text PDF

Reactions of penta-2,4-dienethioamides with acetylenedicarboxylic acid, methyl and ethyl esters, and methyl propiolate were systematically studied, and a number of new 2,3-dihydro-5-thiazolo[3,2-]pyridines (DTPs) and 4,6-pyrido[2,1-][1,3]thiazines (PTZs) were prepared. A possible mechanism for a multistep domino transformation is suggested, and the key step is the 1,6-electrocyclic reaction. An additional alternative method for the synthesis of new heterocyclic systems was achieved.

View Article and Find Full Text PDF

The crystal structures of four new chiral [1,2,3]triazolo[5,1-b][1,3,4]thiadiazines are described, namely, ethyl 5'-benzoyl-5'H,7'H-spiro[cyclohexane-1,6'-[1,2,3]triazolo[5,1-b][1,3,4]thiadiazine]-3'-carboxylate, CHNOS, ethyl 5'-(4-methoxybenzoyl)-5'H,7'H-spiro[cyclohexane-1,6'-[1,2,3]triazolo[5,1-b][1,3,4]thiadiazine]-3'-carboxylate, CHNOS, ethyl 6,6-dimethyl-5-(4-methylbenzoyl)-6,7-dihydro-5H-[1,2,3]triazolo[5,1-b][1,3,4]thiadiazine-3-carboxylate, CHNOS, and ethyl 5-benzoyl-6-(4-methoxyphenyl)-6,7-dihydro-5H-[1,2,3]triazolo[5,1-b][1,3,4]thiadiazine-3-carboxylate, CHNOS. The crystallographic data and cell activities of these four compounds and of the structures of three previously reported similar compounds, namely, ethyl 5'-(4-methylbenzoyl)-5'H,7'H-spiro[cyclopentane-1,6'-[1,2,3]triazolo[5,1-b][1,3,4]thiadiazine]-3'-carboxylate, CHNOS, ethyl 5'-(4-methoxybenzoyl)-5'H,7'H-spiro[cyclopentane-1,6'-[1,2,3]triazolo[5,1-b][1,3,4]thiadiazine]-3'-carboxylate, CHNOS, and ethyl 6-methyl-5-(4-methylbenzoyl)-6-phenyl-6,7-dihydro-5H-[1,2,3]triazolo[5,1-b][1,3,4]thiadiazine-3-carboxylate, CHNOS, are contrasted and compared. For both crystallization and an MTT assay, racemic mixtures of the corresponding [1,2,3]triazolo[5,1-b][1,3,4]thiadiazines were used.

View Article and Find Full Text PDF