Publications by authors named "Varun-Varma Pusapati"

Article Synopsis
  • Phonon polaritons are quasiparticles formed by the interaction of infrared light and lattice vibrations in polar materials, which can enhance infrared absorption through SEIRA spectroscopy.
  • * Researchers have developed a compact on-chip SEIRA spectroscopy platform using an h-BN/graphene/h-BN structure on a metal split-gate, effective at detecting molecular vibrational fingerprints with high sensitivity.
  • * The findings suggest that integrating infrared light sources could advance these sensors, enhancing molecular and gas sensing capabilities significantly.
View Article and Find Full Text PDF

Integrating and manipulating the nano-optoelectronic properties of Van der Waals heterostructures can enable unprecedented platforms for photodetection and sensing. The main challenge of infrared photodetectors is to funnel the light into a small nanoscale active area and efficiently convert it into an electrical signal. Here, we overcome all of those challenges in one device, by efficient coupling of a plasmonic antenna to hyperbolic phonon-polaritons in hexagonal-BN to highly concentrate mid-infrared light into a graphene pn-junction.

View Article and Find Full Text PDF

Acoustic graphene plasmons are highly confined electromagnetic modes carrying large momentum and low loss in the mid-infrared and terahertz spectra. However, until now they have been restricted to micrometer-scale areas, reducing their confinement potential by several orders of magnitude. Using a graphene-based magnetic resonator, we realized single, nanometer-scale acoustic graphene plasmon cavities, reaching mode volume confinement factors of ~5 × 10 Such a cavity acts as a mid-infrared nanoantenna, which is efficiently excited from the far field and is electrically tunable over an extremely large broadband spectrum.

View Article and Find Full Text PDF

Excitons in monolayer transition-metal-dichalcogenides (TMDs) dominate their optical response and exhibit strong light-matter interactions with lifetime-limited emission. While various approaches have been applied to enhance light-exciton interactions in TMDs, the achieved strength have been far below unity, and a complete picture of its underlying physical mechanisms and fundamental limits has not been provided. Here, we introduce a TMD-based van der Waals heterostructure cavity that provides near-unity excitonic absorption, and emission of excitonic complexes that are observed at ultralow excitation powers.

View Article and Find Full Text PDF