Publications by authors named "Varun Vijay Prabhu"

Article Synopsis
  • Uveal melanoma (UM) is a serious cancer with limited treatment options, and this study investigates the effects of imipridones, which activate a protein called CLPP that can indirectly inhibit a harmful energy production process in the cancer cells.
  • Researchers found that imipridones, specifically ONC201 and ONC212, reduce the growth and spread of UM cells in the lab and show promise in decreasing tumor size and increasing survival in animal models.
  • The findings suggest that imipridones could be a new and effective treatment strategy for patients with metastatic uveal melanoma (mUM).
View Article and Find Full Text PDF

Purpose: Uveal melanoma (UM) is a highly aggressive disease with very few treatment options. We previously demonstrated that mUM is characterized by high oxidative phosphorylation (OXPHOS). Here we tested the anti-tumor, signaling and metabolic effects of imipridones, CLPP activators which reduce OXPHOS indirectly and have demonstrated safety in patients.

View Article and Find Full Text PDF

Poly ADP-ribose polymerase (PARP) inhibitors are effective therapies for cancer patients with homologous recombination (HR) deficient tumors. The imipridone ONC206 is an orally bioavailable dopamine receptor D2 antagonist and mitochondrial protease ClpP agonist that has anti-tumorigenic effects in endometrial cancer via induction of apoptosis, activation of the integrated stress response and modulation of PI3K/AKT signaling. Both PARP inhibitors and imipridones are being evaluated in endometrial cancer clinical trials but have yet to be explored in combination.

View Article and Find Full Text PDF

ONC206, a dopamine receptor D2 (DRD2) antagonist and imipridone, is a chemically modified derivative of ONC201. Recently, ONC206 and other imipridones were identified as activators of the mitochondrial protease ClpP, inducing downstream pathways that allow them to selectively target cancer cells. Clinical trials showed that ONC201, the first in class imipridone, was well tolerated and exhibited tumor regression in some solid tumors.

View Article and Find Full Text PDF

Endometrial cancer (EC) is a highly obesity-driven cancer, with limited treatment options. ONC201 is an imipridone that selectively antagonizes the G protein-coupled receptors dopamine receptor D2 and D3 (DRD2/3) and activates human mitochondrial caseinolytic protease P (ClpP). It is a promising first-in-class small molecule that has been reported to have anti-neoplastic activity in various types of cancer through induction of the integrated stress response (ISR) as well as through stimulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and subsequent induction of apoptosis.

View Article and Find Full Text PDF

Background: ONC201 is a dopamine receptor D2 (DRD2) antagonist that inhibits tumor growth in preclinical models through ClpP activation to induce integrated stress response pathway and mitochondrial events related to inhibition of cell growth, which is being explored in clinical trials for solid tumors and hematological malignancies. In this study, we investigated the anti-tumorigenic effect of ONC201 in endometrial cancer cell lines and a genetically engineered mouse model of endometrial cancer.

Methods: Cell proliferation was assessed by MTT and colony formation assays.

View Article and Find Full Text PDF

ONC201 was originally discovered as TNF-Related Apoptosis Inducing Ligand (TRAIL)-inducing compound TIC10. ONC201 appears to act as a selective antagonist of the G protein coupled receptor (GPCR) dopamine receptor D2 (DRD2), and as an allosteric agonist of mitochondrial protease caseinolytic protease P (ClpP). Downstream of target engagement, ONC201 activates the ATF4/CHOP-mediated integrated stress response leading to TRAIL/Death Receptor 5 (DR5) activation, inhibits oxidative phosphorylation via c-myc, and inactivates Akt/ERK signaling in tumor cells.

View Article and Find Full Text PDF