Publications by authors named "Varun Sreenivasan"

Clinical exome and genome sequencing have revolutionized the understanding of human disease genetics. Yet many genes remain functionally uncharacterized, complicating the establishment of causal disease links for genetic variants. While several scoring methods have been devised to prioritize these candidate genes, these methods fall short of capturing the expression heterogeneity across cell subpopulations within tissues.

View Article and Find Full Text PDF

Mouse models are a critical tool for studying human diseases, particularly developmental disorders. However, conventional approaches for phenotyping may fail to detect subtle defects throughout the developing mouse. Here we set out to establish single-cell RNA sequencing of the whole embryo as a scalable platform for the systematic phenotyping of mouse genetic models.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how thyroid hormone and its receptor TRα1 influence brain development, particularly in the hypothalamus, using a mouse model with a specific mutation that causes hypothyroidism.
  • Researchers used single-nucleus RNA sequencing to analyze the effects of defective TRα1 signaling, finding it notably impacts hypothalamic oligodendrocytes but not other neuronal populations.
  • The results highlight the importance of early postnatal thyroid hormone for the maturation of hypothalamic oligodendrocytes and provide insights into the role of thyroid health in brain development.
View Article and Find Full Text PDF

Over the last decade, single-cell sequencing has transformed many fields. It has enabled the unbiased molecular phenotyping of even whole organisms with unprecedented cellular resolution. In the field of human genetics, where the phenotypic consequences of genetic and epigenetic alterations are of central concern, this transformative technology promises to functionally annotate every region in the human genome and all possible variants within them at a massive scale.

View Article and Find Full Text PDF

The structure and function of the circulatory system, including the heart, have undergone substantial changes with the vertebrate evolution. Although the basic function of the heart is to pump blood through the body, its size, shape, speed, regeneration capacity, etc. vary considerably across species.

View Article and Find Full Text PDF

One key factor underlying the functional balance of cortical networks is the ratio of excitatory and inhibitory neurons. The mechanisms controlling the ultimate number of interneurons are beginning to be elucidated, but to what extent similar principles govern the survival of the large diversity of cortical inhibitory cells remains to be investigated. Here, we investigate the mechanisms regulating developmental cell death in neurogliaform cells, bipolar cells, and basket cells, the three main populations of interneurons originating from the caudal ganglionic eminence and the preoptic region.

View Article and Find Full Text PDF

Single-cell sequencing is a powerful approach that can detect genetic alterations and their phenotypic consequences in the context of human development, with cellular resolution. Humans start out as single-cell zygotes and undergo fission and differentiation to develop into multicellular organisms. Before fertilisation and during development, the cellular genome acquires hundreds of mutations that propagate down the cell lineage.

View Article and Find Full Text PDF

Proper orientation of the mitotic spindle plays a crucial role in embryos, during tissue development, and in adults, where it functions to dissipate mechanical stress to maintain tissue integrity and homeostasis. While mitotic spindles have been shown to reorient in response to external mechanical stresses, the subcellular cues that mediate spindle reorientation remain unclear. Here, we used a combination of optogenetics and computational modeling to investigate how mitotic spindles respond to inhomogeneous tension within the actomyosin cortex.

View Article and Find Full Text PDF

The assembly of functional neuronal circuits requires appropriate numbers of distinct classes of neurons, but the mechanisms through which their relative proportions are established remain poorly defined. Investigating the mouse striatum, we found that the two most prominent subtypes of striatal interneurons, parvalbumin-expressing (PV+) GABAergic and cholinergic (ChAT+) interneurons, undergo extensive programmed cell death between the first and second postnatal weeks. Remarkably, the survival of PV+ and ChAT+ interneurons is regulated by distinct mechanisms mediated by their specific afferent connectivity.

View Article and Find Full Text PDF

X-linked dystonia-parkinsonism (XDP) is a severe neurodegenerative disorder that manifests as adult-onset dystonia combined with parkinsonism. A SINE-VNTR-Alu (SVA) retrotransposon inserted in an intron of the gene reduces its expression and alters splicing in XDP patient-derived cells. As a consequence, increased levels of the intron retention transcript can be found in XDP cells as compared to healthy controls.

View Article and Find Full Text PDF

Copy-number variations (CNVs) are a common cause of congenital limb malformations and are interpreted primarily on the basis of their effect on gene dosage. However, recent studies show that CNVs also influence the 3D genome chromatin organization. The functional interpretation of whether a phenotype is the result of gene dosage or a regulatory position effect remains challenging.

View Article and Find Full Text PDF

To address the growing demand for simultaneous imaging of multiple biomarkers in highly scattering media such as organotypic cell cultures, we introduce a new type of photoluminescent nanomaterial termed "tau-ruby" composed of ruby nanocrystals (AlO:Cr) with tunable emission lifetime. The lifetime tuning range from 2.4 to 3.

View Article and Find Full Text PDF

Protein-protein interactions at the plasma membrane mediate transmembrane signaling. Dual-channel fluorescence cross-correlation spectroscopy (dc-FCCS) is a method with which these interactions can be quantified in a cellular context. However, factors such as incomplete maturation of fluorescent proteins, spectral crosstalk, and fluorescence resonance energy transfer (FRET) affect quantification.

View Article and Find Full Text PDF

Sensitive and long-term fluorescence imaging of G-protein-coupled receptors enables exploration of molecular level details of these therapeutically relevant proteins, including their expression, localization, signaling, and intracellular trafficking. In this context, labeling these receptors with bright and photostable fluorescent probes is necessary to overcome current imaging problems such as optical background and photobleaching. Here, we describe the procedures to functionalize nanoruby (and other similar nanoparticles) with NeutrAvidin (a streptavidin analog) and to apply this bioconjugate for ultrasensitive, long-term imaging of μ-opioid receptors heterologously expressed in AtT-20 cells.

View Article and Find Full Text PDF

Evidence from several novel opioid agonists and knockout animals suggests that improved opioid therapeutic window, notably for analgesia versus respiratory depression, is a result of ligand bias downstream of activation of the -opioid receptor (MOR) toward G protein signaling and away from other pathways, such as arrestin recruitment. Here, we argue that published claims of opioid bias based on application of the operational model of agonism are frequently confounded by failure to consider the assumptions of the model. These include failure to account for intrinsic efficacy and ceiling effects in different pathways, distortions introduced by analysis of amplified (G protein) versus linear (arrestin) signaling mechanisms, and nonequilibrium effects in a dynamic signaling cascade.

View Article and Find Full Text PDF

Complex neuronal circuitries such as those found in the mammalian cerebral cortex have evolved as balanced networks of excitatory and inhibitory neurons. Although the establishment of appropriate numbers of these cells is essential for brain function and behaviour, our understanding of this fundamental process is limited. Here we show that the survival of interneurons in mice depends on the activity of pyramidal cells in a critical window of postnatal development, during which excitatory synaptic input to individual interneurons predicts their survival or death.

View Article and Find Full Text PDF

Cell volume regulation is fundamentally important in phenomena such as cell growth, proliferation, tissue homeostasis, and embryogenesis. How the cell size is set, maintained, and changed over a cell's lifetime is not well understood. In this work we focus on how the volume of nonexcitable tissue cells is coupled to the cell membrane electrical potential and the concentrations of membrane-permeable ions in the cell environment.

View Article and Find Full Text PDF

In the recent years, there has been an increase in awareness with regards to the role of palliative care (PC) in management of neurologic diseases. In 1996, the need to incorporate PC in the care for patients with neurologic conditions was recognized by the American Academy of Neurology (AAN) Ethics and Humanities Subcommittee. The gaps in research, education and the ability to deliver adequate PC were then acknowledged by the National Academy of Sciences with their publication of "Approaching death: improving care at the end of life" and most recently, continued goals in improving PC was highlighted by another recent publication "Dying in America: improving quality and honoring individual preferences near the end of life".

View Article and Find Full Text PDF

At the forefront of developing fluorescent probes for biological imaging applications are enhancements aimed at increasing their brightness, contrast, and photostability, especially toward demanding applications of single-molecule detection. In comparison with existing probes, nanorubies exhibit unlimited photostability and a long emission lifetime (∼4 ms), which enable continuous imaging at single-particle sensitivity in highly scattering and fluorescent biological specimens. However, their wide application as fluorescence probes has so far been hindered by the absence of facile methods for scaled-up high-volume production and molecularly specific targeting.

View Article and Find Full Text PDF
Article Synopsis
  • Focused radiosurgery can induce changes in diseased endothelial surfaces, potentially allowing for targeted therapy delivery.
  • The study examined how ionizing radiation affects the expression of adhesion molecules ICAM-1 and VCAM-1 in endothelial cells, both in lab cultures and in a rat model of arteriovenous malformations (AVMs).
  • Results showed that while radiation boosts adhesion molecule expression in vitro, AVMs already have high baseline levels, limiting further increases in vivo, making these molecules less suitable as targets in AVM treatment.
View Article and Find Full Text PDF

The evidence that any protein exists in the Human Proteome Project (HPP; protein evidence 1 or PE1) has revolved primarily (although not exclusively) around mass spectrometry (MS) (93% of PE1 proteins have MS evidence in the latest neXtProt release), with robust and stringent, well-curated metrics that have served the community well. This has led to a significant number of proteins still considered "missing" (i.e.

View Article and Find Full Text PDF

During cytoskeleton remodeling, cancer cells generate force at the plasma membrane that originates from chemical motors (e.g., actin).

View Article and Find Full Text PDF

Frontal cortex plays a central role in the control of voluntary movements, which are typically guided by sensory input. Here, we investigate the function of mouse whisker primary motor cortex (wM1), a frontal region defined by dense innervation from whisker primary somatosensory cortex (wS1). Optogenetic stimulation of wM1 evokes rhythmic whisker protraction (whisking), whereas optogenetic inactivation of wM1 suppresses initiation of whisking.

View Article and Find Full Text PDF

The spatial organization of mouse frontal cortex is poorly understood. Here, we used voltage-sensitive dye to image electrical activity in the dorsal cortex of awake head-restrained mice. Whisker-deflection evoked the earliest sensory response in a localized region of primary somatosensory cortex and visual stimulation evoked the earliest responses in a localized region of primary visual cortex.

View Article and Find Full Text PDF