Publications by authors named "Varun S Nair"

Cue reactivity is the maladaptive neurobiological and behavioral response upon exposure to drug cues and is a major driver of relapse. A widely accepted assumption is that drugs of abuse result in disparate dopamine responses to cues that predict drug vs. natural rewards.

View Article and Find Full Text PDF

Cue reactivity is the maladaptive neurobiological and behavioral response upon exposure to drug cues and is a major driver of relapse. The leading hypothesis is that dopamine release by addictive drugs represents a persistently positive reward prediction error that causes runaway enhancement of dopamine responses to drug cues, leading to their pathological overvaluation compared to non-drug reward alternatives. However, this hypothesis has not been directly tested.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is among the leading causes of cancer-related deaths worldwide, underscoring a need for better understanding of the disease and development of novel diagnostic biomarkers and therapeutic interventions. Herein, we performed transcriptome analyses on peripheral blood mononuclear cells (PBMCs), CRC tumor tissue and adjacent normal tissue from 10 CRC patients and PBMCs from 15 healthy controls. Up regulated transcripts from CRC PBMCs were associated with functions related to immune cell trafficking and cellular movement, while downregulated transcripts were enriched in cellular processes related to cell death.

View Article and Find Full Text PDF

Stable expression of Foxp3 is ensured by demethylation of CpG motifs in the intronic element, the conserved non-coding sequence 2 (CNS2), which persists throughout the lifespan of regulatory T cells (Tregs). However, little is known about the mechanisms on how CNS2 demethylation is sustained. In this study, we found that Ten-Eleven-Translocation (Tet) DNA dioxygenase protects the CpG motifs of CNS2 from re-methylation by DNA methyltransferases (Dnmts) and prevents Tregs from losing Foxp3 expression under inflammatory conditions.

View Article and Find Full Text PDF

Previously, we reported that vitamin C facilitates the CpG demethylation of Foxp3 enhancer in CD4+Foxp3+ regulatory T cells (Tregs) by enhancing the activity of a DNA demethylase ten-eleven-translocation (Tet). However, it is not clear whether vitamin C affects other helper T cell lineages like T helper type 17 (Th17) cells which are related with Tregs. Here, we show that the expression of interleukin-17A (IL17) increases with the treatment of vitamin C but not with other antioxidants.

View Article and Find Full Text PDF

Stable expression of Foxp3 in regulatory T (Treg) cells is dependent on both intrinsic factors like epigenetic changes (demethylation) of Treg cell specific demethylation region (TSDR) and environmental cues like inflammations. Interleukin-2 (IL2) was reported to be one of the cytokines that give signals to Foxp3 stability but the underlying mechanism is still elusive. Here we show that IL2 and epigenetic changes in foxp3 locus are closely connected through tet methylcytosine dioxygenase 2 (Tet2) and, together help Treg cells to express Foxp3 stably.

View Article and Find Full Text PDF