The transcription factor SNAI1 mediates epithelial-mesenchymal transition, fibroblast activation and controls inter-tissue migration. High SNAI1 expression characterizes metastatic triple-negative breast carcinomas, and its knockout by CRISPR/Cas9 uncovered an epithelio-mesenchymal phenotype accompanied by reduced signaling by the cytokine TGFβ. The SNAI1 knockout cells exhibited plasticity in differentiation, drifting towards the luminal phenotype, gained stemness potential and could differentiate into acinar mammospheres in 3D culture.
View Article and Find Full Text PDFZinc finger E-box binding homeobox 1 (ZEB1) is a transcriptional regulator involved in embryonic development and cancer progression. ZEB1 induces epithelial-mesenchymal transition (EMT). Triple-negative human breast cancers express high ZEB1 mRNA levels and exhibit features of EMT.
View Article and Find Full Text PDFTranscriptional regulation mediated by the zinc finger protein Snail1 controls early embryogenesis. By binding to the epithelial tumor suppressor CDH1 gene, Snail1 initiates the epithelial-mesenchymal transition (EMT). The EMT generates stem-like cells and promotes invasiveness during cancer progression.
View Article and Find Full Text PDFA large fraction of the adult population is on lifelong medication for cardiovascular disorders, but the metabolic consequences are largely unknown. This study determines the effects of common anti-hypertensive and lipid lowering drugs on circulating plasma protein biomarkers. We studied 425 proteins in plasma together with anthropometric and lifestyle variables, and the genetic profile in a cross-sectional cohort.
View Article and Find Full Text PDFHuman ALC1 is an oncogene-encoded chromatin-remodeling enzyme required for DNA repair that possesses a poly(ADP-ribose) (PAR)-binding macro domain. Its engagement with PARylated PARP1 activates ALC1 at sites of DNA damage, but the underlying mechanism remains unclear. Here, we establish a dual role for the macro domain in autoinhibition of ALC1 ATPase activity and coupling to nucleosome mobilization.
View Article and Find Full Text PDFCold Spring Harb Perspect Biol
March 2018
Epithelial cells contribute to the development of various vital organs by generating tubular and/or glandular architectures. The fully developed forms of ductal organs depend on processes of branching morphogenesis, whereby frequency, total number, and complexity of the branching tissue define the final architecture in the organ. Some ductal tissues, like the mammary gland during pregnancy and lactation, disintegrate and regenerate through periodic cycles.
View Article and Find Full Text PDFWe previously established a mechanism of negative regulation of transforming growth factor β signaling mediated by the nuclear ADP-ribosylating enzyme poly-(ADP-ribose) polymerase 1 (PARP1) and the deribosylating enzyme poly-(ADP-ribose) glycohydrolase (PARG), which dynamically regulate ADP-ribosylation of Smad3 and Smad4, two central signaling proteins of the pathway. Here we demonstrate that the bone morphogenetic protein (BMP) pathway can also be regulated by the opposing actions of PARP1 and PARG. PARG positively contributes to BMP signaling and forms physical complexes with Smad5 and Smad4.
View Article and Find Full Text PDFBackground: Initiation, amplitude, duration and termination of transforming growth factor β (TGFβ) signaling via Smad proteins is regulated by post-translational modifications, including phosphorylation, ubiquitination and acetylation. We previously reported that ADP-ribosylation of Smads by poly(ADP-ribose) polymerase 1 (PARP-1) negatively influences Smad-mediated transcription. PARP-1 is known to functionally interact with PARP-2 in the nucleus and the enzyme poly(ADP-ribose) glycohydrolase (PARG) can remove poly(ADP-ribose) chains from target proteins.
View Article and Find Full Text PDFThe shelterin proteins are required for telomere integrity. Shelterin dysfunction can lead to initiation of unwarranted DNA damage and repair pathways at chromosomal termini. Interestingly, many shelterin accessory proteins are involved in DNA damage signaling and repair.
View Article and Find Full Text PDFHuman POT1, a widely studied telomere protector protein is perceived to be expressed as a single 70kDa form. A survey of the literature as well as different commercially available antibodies against POT1 suggests occurrence of multiple forms of POT1. Knowledge about possible various forms of an important protein like POT1 is necessary for our understanding about its function.
View Article and Find Full Text PDF